Hyewon Shin, Sunwoo Geum, Jimin Lee, Minkyun Shin, Kang Min Ok, Seong Jung Kwon, Junghwan Do
{"title":"Comparison of oxygen evolution reaction performance for Ni and Co using isostructural trans-cinnamate complexes","authors":"Hyewon Shin, Sunwoo Geum, Jimin Lee, Minkyun Shin, Kang Min Ok, Seong Jung Kwon, Junghwan Do","doi":"10.1002/bkcs.12910","DOIUrl":null,"url":null,"abstract":"<p>Efforts are underway to develop highly active catalysts to reduce the high overpotential of the oxygen evolution reaction (OER). Metal–organic frameworks or coordination polymers are promising candidates because of their tunable structures and high surface areas. In this study, Nickel and Cobalt <i>trans</i>-<i>cinnamate</i> (<i>t-ca</i>) were synthesized via a hydrothermal method. Their structures were analyzed and found to be isostructural. Both complexes exhibited superior electrocatalytic properties in the OER compared to those of IrO<sub>2</sub>, with overpotentials of 373 and 390 mV and Tafel slopes of 58 and 66 mV/dec. These excellent characteristics were attributed to the electron delocalization of the metal centers via interactions with π-π delocalized organic ligands. Ni <i>t-ca</i>, with stronger ligand interactions, displayed an enhanced OER catalytic performance, emphasizing the importance of metal–ligand interactions and suggesting that further exploration of diverse π–π delocalized organic ligands and metal centers may lead to further advancements in electrocatalytic activity.</p>","PeriodicalId":54252,"journal":{"name":"Bulletin of the Korean Chemical Society","volume":"45 11","pages":"920-928"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bkcs.12910","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Efforts are underway to develop highly active catalysts to reduce the high overpotential of the oxygen evolution reaction (OER). Metal–organic frameworks or coordination polymers are promising candidates because of their tunable structures and high surface areas. In this study, Nickel and Cobalt trans-cinnamate (t-ca) were synthesized via a hydrothermal method. Their structures were analyzed and found to be isostructural. Both complexes exhibited superior electrocatalytic properties in the OER compared to those of IrO2, with overpotentials of 373 and 390 mV and Tafel slopes of 58 and 66 mV/dec. These excellent characteristics were attributed to the electron delocalization of the metal centers via interactions with π-π delocalized organic ligands. Ni t-ca, with stronger ligand interactions, displayed an enhanced OER catalytic performance, emphasizing the importance of metal–ligand interactions and suggesting that further exploration of diverse π–π delocalized organic ligands and metal centers may lead to further advancements in electrocatalytic activity.
期刊介绍:
The Bulletin of the Korean Chemical Society is an official research journal of the Korean Chemical Society. It was founded in 1980 and reaches out to the chemical community worldwide. It is strictly peer-reviewed and welcomes Accounts, Communications, Articles, and Notes written in English. The scope of the journal covers all major areas of chemistry: analytical chemistry, electrochemistry, industrial chemistry, inorganic chemistry, life-science chemistry, macromolecular chemistry, organic synthesis, non-synthetic organic chemistry, physical chemistry, and materials chemistry.