Enhancement of zebrafish sperm activation through microfluidic mixing induced by aquatic microrobots

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION
Kai-Hsiang Yang, Dineshkumar Loganathan, Ming-Lung Chen, Vignesh Sahadevan, Chia-Yun Chen, Chia-Yuan Chen
{"title":"Enhancement of zebrafish sperm activation through microfluidic mixing induced by aquatic microrobots","authors":"Kai-Hsiang Yang,&nbsp;Dineshkumar Loganathan,&nbsp;Ming-Lung Chen,&nbsp;Vignesh Sahadevan,&nbsp;Chia-Yun Chen,&nbsp;Chia-Yuan Chen","doi":"10.1007/s10404-024-02778-0","DOIUrl":null,"url":null,"abstract":"<div><p>The activation of zebrafish sperm is essential for advancing vertebrate research, including studies in germplasm physiology and cryopreservation. In this study, a magnetic microrobot-based micromixer is developed to maximize zebrafish sperm activation through uniform micromixing and precise hydrodynamic control. Three distinct configurations of the microfluidic channel, labeled Design I, II, and III, are proposed and employed to activate zebrafish sperm cells. These configurations are distinguished by the number of microrobots utilized and their specific placement within the microfluidic channel. The fluid shear rate induced by the microrobot’s rotational motion is quantified to be 0.2 s⁻¹, falling within the lower range conducive to sperm activation. Meanwhile, zebrafish sperm activation percentage is observed to reach 88% within 10 s in an individual experiment. Additionally, the dynamics of sperm motility parameters, including VSL (straight-line velocity), VCL (curvilinear velocity), and LIN (linearity, VSL/VCL), are quantified to verify these results. The LIN value is observed to be 0.91 for Design III at the actuation time period of 10 s, indicating that the activated sperms are highly efficient and progressively motile. This study underscores the efficacy of microrobotic technologies in live cell manipulation, establishing a promising approach for future research.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02778-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The activation of zebrafish sperm is essential for advancing vertebrate research, including studies in germplasm physiology and cryopreservation. In this study, a magnetic microrobot-based micromixer is developed to maximize zebrafish sperm activation through uniform micromixing and precise hydrodynamic control. Three distinct configurations of the microfluidic channel, labeled Design I, II, and III, are proposed and employed to activate zebrafish sperm cells. These configurations are distinguished by the number of microrobots utilized and their specific placement within the microfluidic channel. The fluid shear rate induced by the microrobot’s rotational motion is quantified to be 0.2 s⁻¹, falling within the lower range conducive to sperm activation. Meanwhile, zebrafish sperm activation percentage is observed to reach 88% within 10 s in an individual experiment. Additionally, the dynamics of sperm motility parameters, including VSL (straight-line velocity), VCL (curvilinear velocity), and LIN (linearity, VSL/VCL), are quantified to verify these results. The LIN value is observed to be 0.91 for Design III at the actuation time period of 10 s, indicating that the activated sperms are highly efficient and progressively motile. This study underscores the efficacy of microrobotic technologies in live cell manipulation, establishing a promising approach for future research.

Abstract Image

通过水生微型机器人诱导的微流体混合提高斑马鱼精子活化能力
斑马鱼精子的活化对推进脊椎动物研究,包括种质生理和冷冻保存研究至关重要。本研究开发了一种基于磁性微机器人的微混合器,通过均匀的微混合和精确的流体动力学控制,最大限度地激活斑马鱼精子。该研究提出了微流体通道的三种不同配置,分别标记为设计 I、II 和 III,用于激活斑马鱼精子细胞。这些配置的区别在于微机器人的数量及其在微流体通道中的具体位置。微机器人旋转运动引起的流体剪切速率被量化为 0.2 s-¹,处于有利于精子活化的较低范围内。同时,在单个实验中观察到斑马鱼精子激活率在 10 秒内达到 88%。此外,为了验证上述结果,还对精子运动参数,包括 VSL(直线速度)、VCL(曲线速度)和 LIN(线性度,VSL/VCL)进行了量化。在启动时间为 10 秒时,设计 III 的 LIN 值为 0.91,这表明激活的精子具有高效和渐进的运动能力。这项研究强调了微型机器人技术在活细胞操作中的功效,为未来的研究提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信