{"title":"Biopolymer-based oral films integrated with probiotic active compounds for improved health applications","authors":"Sinem Tunçer Çağlayan","doi":"10.1007/s00203-024-04207-w","DOIUrl":null,"url":null,"abstract":"<div><p>Orally dissolving films (ODFs) have emerged as a versatile platform that combines convenience, efficacy, and patient compliance. In this study, the cell-free supernatant of the oral probiotic <i>Streptococcus salivarius</i> M18 was incorporated into various biopolymer-based ODF formulations, evaluated for demolding, fragility, and flexibility. The combination of carboxymethyl cellulose, sodium alginate, and glycerol successfully formed stable films. The films were characterized by weight, thickness, pH, and disintegration times. Fourier-transform infrared spectroscopy (FTIR) was used to analyze ODF content and release profiles in simulated saliva. Unique absorption peaks in the cell-free product-incorporated ODF samples confirmed the integration of bacterial proteins, lipids, and nucleic acids into the ODF matrix. The biological activity of the ODF carrying M18 bioactive products was assessed by its inhibitory effect on the growth of <i>Streptococcus mutans</i>, a pathogen linked to dental plaque and cavities. Additionally, the anti-proliferative effect on cancer epithelial cells was demonstrated. This study show that probiotic products can be integrated into bio-based thin films without losing activity, making this delivery platform promising for local and potentially systemic effects.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04207-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Orally dissolving films (ODFs) have emerged as a versatile platform that combines convenience, efficacy, and patient compliance. In this study, the cell-free supernatant of the oral probiotic Streptococcus salivarius M18 was incorporated into various biopolymer-based ODF formulations, evaluated for demolding, fragility, and flexibility. The combination of carboxymethyl cellulose, sodium alginate, and glycerol successfully formed stable films. The films were characterized by weight, thickness, pH, and disintegration times. Fourier-transform infrared spectroscopy (FTIR) was used to analyze ODF content and release profiles in simulated saliva. Unique absorption peaks in the cell-free product-incorporated ODF samples confirmed the integration of bacterial proteins, lipids, and nucleic acids into the ODF matrix. The biological activity of the ODF carrying M18 bioactive products was assessed by its inhibitory effect on the growth of Streptococcus mutans, a pathogen linked to dental plaque and cavities. Additionally, the anti-proliferative effect on cancer epithelial cells was demonstrated. This study show that probiotic products can be integrated into bio-based thin films without losing activity, making this delivery platform promising for local and potentially systemic effects.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.