S. A. Asfandiyarov, S. A. Tsysar, O. A. Sapozhnikov
{"title":"A Multielement Low-Frequency Ultrasonic Transducer as a Source of High-Intensity Focused Ultrasound in Air","authors":"S. A. Asfandiyarov, S. A. Tsysar, O. A. Sapozhnikov","doi":"10.1134/S1063771024601936","DOIUrl":null,"url":null,"abstract":"<p>The acoustic and electrical properties of a 128-element ultrasonic transducer designed to generate high-intensity focused ultrasound in air in the low-frequency ultrasonic range are investigated. To reduce parasitic grating maxima of the acoustic field, a spiral arrangement of piezoelectric elements on a spherical base was used. The operating frequency of the transducer was 35.5 kHz, and the diameter of the source and focal length were approximately 50 cm, significantly exceeding the wavelength (approximately 1 cm). This selection of parameters allowed for effective focusing, with localization of wave energy in a small focal region, thereby achieving extremely high levels of ultrasonic intensity. The parameters of the ultrasonic field were studied using a combined approach that included microphone recording of the acoustic pressure and measuring the acoustic radiation force acting on a conical reflector. Acoustic source parameters were determined from the two-dimensional spatial distribution of the acoustic pressure waveform, which was measured by scanning the microphone in a transverse plane in front of the source. Numerical modeling of nonlinear wave propagation was also used based on the Westervelt equation to simulate the behavior of intense waves. The acoustic pressure level reached 173 dB, with a focal spot size comparable to the wavelength.</p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 4","pages":"759 - 768"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1063771024601936.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771024601936","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The acoustic and electrical properties of a 128-element ultrasonic transducer designed to generate high-intensity focused ultrasound in air in the low-frequency ultrasonic range are investigated. To reduce parasitic grating maxima of the acoustic field, a spiral arrangement of piezoelectric elements on a spherical base was used. The operating frequency of the transducer was 35.5 kHz, and the diameter of the source and focal length were approximately 50 cm, significantly exceeding the wavelength (approximately 1 cm). This selection of parameters allowed for effective focusing, with localization of wave energy in a small focal region, thereby achieving extremely high levels of ultrasonic intensity. The parameters of the ultrasonic field were studied using a combined approach that included microphone recording of the acoustic pressure and measuring the acoustic radiation force acting on a conical reflector. Acoustic source parameters were determined from the two-dimensional spatial distribution of the acoustic pressure waveform, which was measured by scanning the microphone in a transverse plane in front of the source. Numerical modeling of nonlinear wave propagation was also used based on the Westervelt equation to simulate the behavior of intense waves. The acoustic pressure level reached 173 dB, with a focal spot size comparable to the wavelength.
期刊介绍:
Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.