Gharam A. Alharshan, S. Hassaballa, M. A. M. Uosif, E. R. Shaaban, Mohamed N. Abd-el Salam
{"title":"Impact of Low Iron Doping on the Structural, Optical, and Magnetic Properties of Zinc Oxide Nanofilms for Spintronic Applications","authors":"Gharam A. Alharshan, S. Hassaballa, M. A. M. Uosif, E. R. Shaaban, Mohamed N. Abd-el Salam","doi":"10.1007/s10948-024-06826-2","DOIUrl":null,"url":null,"abstract":"<div><p>Films with varying compositions of Zn<sub>1-x</sub>Fe<sub>x</sub>O (0 ≤ <i>x</i> ≤ 0.10) were produced using the sol–gel technique. The structural, optical, and magnetic studies were examined via “X-ray diffraction,” “EDX,” “UV–Vis spectrophotometer,” and “vibrating magnetometer.” The X-ray analysis data shows that all the films under examination have a hexagonal polycrystalline structure. As well, the crystallite size, <i>D</i>, reduced from 16.7 to 12.5 nm as the Fe ratio rose. The current findings show that the band gap, <i>E</i><sub><i>g</i></sub><sup><i>opt</i></sup>, is decreasing from 3.389 to 3.036 eV, suggesting the sp-d exchange that occurs between the s-p electrons of the valence and conduction bands and the d-electrons associated with the doped Fe<sup>3+</sup> ions. Additionally, the refractive index, <i>n</i>, extinction coefficient, <i>k</i><sub><i>ex</i></sub>, and coefficient of Verdet, <i>Vλ</i>, as well the sheet resistance, <i>R</i><sub><i>s</i></sub>, and the figure of merit, <i>φ</i>, are estimated as a function of the doped Fe<sup>3+</sup> ions ratio. Furthermore, the dispersion energy, <i>E</i><sub><i>d</i></sub>, increased from 11.476 to 11.906 eV, while the single oscillator energy, <i>E</i><sub><i>o</i></sub>, decreased from 6.72 to 6.063 eV. These results evidence that the incorporation of Fe into the ZnO lattice leads to the tunability of the optical properties. Finally, the measurements of magnetization exhibit a hysteresis loop in Fe-doped ZnO nanofilms, confirming the presence of room-temperature ferromagnetism. Making the Fe-doped ZnO films is suitable for use in optoelectronic and spintronic device applications.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"37 11-12","pages":"1871 - 1883"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06826-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Films with varying compositions of Zn1-xFexO (0 ≤ x ≤ 0.10) were produced using the sol–gel technique. The structural, optical, and magnetic studies were examined via “X-ray diffraction,” “EDX,” “UV–Vis spectrophotometer,” and “vibrating magnetometer.” The X-ray analysis data shows that all the films under examination have a hexagonal polycrystalline structure. As well, the crystallite size, D, reduced from 16.7 to 12.5 nm as the Fe ratio rose. The current findings show that the band gap, Egopt, is decreasing from 3.389 to 3.036 eV, suggesting the sp-d exchange that occurs between the s-p electrons of the valence and conduction bands and the d-electrons associated with the doped Fe3+ ions. Additionally, the refractive index, n, extinction coefficient, kex, and coefficient of Verdet, Vλ, as well the sheet resistance, Rs, and the figure of merit, φ, are estimated as a function of the doped Fe3+ ions ratio. Furthermore, the dispersion energy, Ed, increased from 11.476 to 11.906 eV, while the single oscillator energy, Eo, decreased from 6.72 to 6.063 eV. These results evidence that the incorporation of Fe into the ZnO lattice leads to the tunability of the optical properties. Finally, the measurements of magnetization exhibit a hysteresis loop in Fe-doped ZnO nanofilms, confirming the presence of room-temperature ferromagnetism. Making the Fe-doped ZnO films is suitable for use in optoelectronic and spintronic device applications.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.