M. N. Antonova, Shixiang Zhao, Yu. V. Petrov, Mingyi Zheng, Baoqiang Li
{"title":"Incubation-time-based modeling of the grain-size-influenced yield point phenomenon","authors":"M. N. Antonova, Shixiang Zhao, Yu. V. Petrov, Mingyi Zheng, Baoqiang Li","doi":"10.1007/s00707-024-04075-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a modified relaxation model of plasticity (MRP model) that captures the non-monotonic stress–strain relation, especially the yield point phenomenon (YPP), observed in some metallic materials subjected to relatively low loading rates. The YPP refers to a distinct stress decrease during the initial plastic deformation stage. The relaxation model of plasticity (RP model) was developed from the incubation time approach, which takes into account the time sensitivity of materials to describe various stress–strain relationships. Based on experimental facts for copper whiskers, silver whiskers, and magnesium alloys Mg–0.3Ca (wt%) and Mg–1.0Al–1.0Ca–0.4Mn (wt%) with different grain sizes, the descriptive abilities of the MRP model are compared with the original RP model. Thus, the temporal nature of the stress drop effect that reveals itself even for low strain rate conditions is established. Additionally, the impact of grain size on the incubation time is examined, which indicates a noticeable trend of increasing incubation time as grain size decreases.</p></div>","PeriodicalId":456,"journal":{"name":"Acta Mechanica","volume":"235 12","pages":"7141 - 7158"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00707-024-04075-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a modified relaxation model of plasticity (MRP model) that captures the non-monotonic stress–strain relation, especially the yield point phenomenon (YPP), observed in some metallic materials subjected to relatively low loading rates. The YPP refers to a distinct stress decrease during the initial plastic deformation stage. The relaxation model of plasticity (RP model) was developed from the incubation time approach, which takes into account the time sensitivity of materials to describe various stress–strain relationships. Based on experimental facts for copper whiskers, silver whiskers, and magnesium alloys Mg–0.3Ca (wt%) and Mg–1.0Al–1.0Ca–0.4Mn (wt%) with different grain sizes, the descriptive abilities of the MRP model are compared with the original RP model. Thus, the temporal nature of the stress drop effect that reveals itself even for low strain rate conditions is established. Additionally, the impact of grain size on the incubation time is examined, which indicates a noticeable trend of increasing incubation time as grain size decreases.
期刊介绍:
Since 1965, the international journal Acta Mechanica has been among the leading journals in the field of theoretical and applied mechanics. In addition to the classical fields such as elasticity, plasticity, vibrations, rigid body dynamics, hydrodynamics, and gasdynamics, it also gives special attention to recently developed areas such as non-Newtonian fluid dynamics, micro/nano mechanics, smart materials and structures, and issues at the interface of mechanics and materials. The journal further publishes papers in such related fields as rheology, thermodynamics, and electromagnetic interactions with fluids and solids. In addition, articles in applied mathematics dealing with significant mechanics problems are also welcome.