Hierarchical Cubes: Gibbs Measures and Decay of Correlations

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Sabine Jansen, Jan Philipp Neumann
{"title":"Hierarchical Cubes: Gibbs Measures and Decay of Correlations","authors":"Sabine Jansen,&nbsp;Jan Philipp Neumann","doi":"10.1007/s10955-024-03375-9","DOIUrl":null,"url":null,"abstract":"<div><p>We study a hierarchical model of non-overlapping cubes of sidelengths <span>\\(2^j\\)</span>, <span>\\(j\\in {\\mathbb {Z}}\\)</span>. The model allows for cubes of arbitrarily small size and the activities need not be translationally invariant. It can also be recast as a spin system on a tree with a long-range hard-core interaction. We prove necessary and sufficient conditions for the existence and uniqueness of Gibbs measures, discuss fragmentation and condensation, and prove bounds on the decay of two-point correlation functions.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"191 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-024-03375-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03375-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study a hierarchical model of non-overlapping cubes of sidelengths \(2^j\), \(j\in {\mathbb {Z}}\). The model allows for cubes of arbitrarily small size and the activities need not be translationally invariant. It can also be recast as a spin system on a tree with a long-range hard-core interaction. We prove necessary and sufficient conditions for the existence and uniqueness of Gibbs measures, discuss fragmentation and condensation, and prove bounds on the decay of two-point correlation functions.

分层立方体:吉布斯测量和相关性衰减
我们研究了一个边长为 \(2^j\), \(j\in {\mathbb {Z}}\) 的非重叠立方体的分层模型。该模型允许任意小的立方体,而且活动不需要平移不变。它也可以被重铸为一个具有长程硬核相互作用的树上自旋系统。我们证明了吉布斯量存在性和唯一性的必要条件和充分条件,讨论了碎片化和凝聚,并证明了两点相关函数的衰减边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信