Jinpeng Huang, Zhennao Cai, Ali Asghar Heidari, Lei Liu, Huiling Chen, Guoxi Liang
{"title":"Learner Phase of Partial Reinforcement Optimizer with Nelder-Mead Simplex for Parameter Extraction of Photovoltaic Models","authors":"Jinpeng Huang, Zhennao Cai, Ali Asghar Heidari, Lei Liu, Huiling Chen, Guoxi Liang","doi":"10.1007/s42235-024-00593-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes an improved version of the Partial Reinforcement Optimizer (PRO), termed LNPRO. The LNPRO has undergone a learner phase, which allows for further communication of information among the PRO population, changing the state of the PRO in terms of self-strengthening. Furthermore, the Nelder-Mead simplex is used to optimize the best agent in the population, accelerating the convergence speed and improving the accuracy of the PRO population. By comparing LNPRO with nine advanced algorithms in the IEEE CEC 2022 benchmark function, the convergence accuracy of the LNPRO has been verified. The accuracy and stability of simulated data and real data in the parameter extraction of PV systems are crucial. Compared to the PRO, the precision and stability of LNPRO have indeed been enhanced in four types of photovoltaic components, and it is also superior to other excellent algorithms. To further verify the parameter extraction problem of LNPRO in complex environments, LNPRO has been applied to three types of manufacturer data, demonstrating excellent results under varying irradiation and temperatures. In summary, LNPRO holds immense potential in solving the parameter extraction problems in PV systems.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 6","pages":"3041 - 3075"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00593-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes an improved version of the Partial Reinforcement Optimizer (PRO), termed LNPRO. The LNPRO has undergone a learner phase, which allows for further communication of information among the PRO population, changing the state of the PRO in terms of self-strengthening. Furthermore, the Nelder-Mead simplex is used to optimize the best agent in the population, accelerating the convergence speed and improving the accuracy of the PRO population. By comparing LNPRO with nine advanced algorithms in the IEEE CEC 2022 benchmark function, the convergence accuracy of the LNPRO has been verified. The accuracy and stability of simulated data and real data in the parameter extraction of PV systems are crucial. Compared to the PRO, the precision and stability of LNPRO have indeed been enhanced in four types of photovoltaic components, and it is also superior to other excellent algorithms. To further verify the parameter extraction problem of LNPRO in complex environments, LNPRO has been applied to three types of manufacturer data, demonstrating excellent results under varying irradiation and temperatures. In summary, LNPRO holds immense potential in solving the parameter extraction problems in PV systems.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.