Nazli Ece Varan, Dilek Alagöz, Ali Toprak, Hatice Korkmaz Güvenmez, Deniz Yildirim
{"title":"Immobilization of pullulanase from Bacillus licheniformis on magnetic multi-walled carbon nanotubes for maltooligosaccharide production","authors":"Nazli Ece Varan, Dilek Alagöz, Ali Toprak, Hatice Korkmaz Güvenmez, Deniz Yildirim","doi":"10.1007/s11696-024-03764-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, Fe<sub>3</sub>O<sub>4</sub>-coated multi-walled carbon nanotubes (MWCNT-Fe<sub>3</sub>O<sub>4</sub>) or nickel oxide-coated multi-walled carbon nanotubes (MWCNT-NiO) were activated with 3-Glycidyloxypropyl)trimethoxysilane (3-GPTMS) to create oxirane groups. Pullulanase from <i>Bacillus licheniformis</i> was covalently immobilized on these magnetic MWCNTs to obtain magnetically separable immobilized pullulanase preparations (MWCNT-Fe<sub>3</sub>O<sub>4</sub>@Pul or MWCNT-NiO@Pul) for producing maltooligosaccharides (MOSs) from pullulan. The highest recovered activity values were 78% and 85% respectively, for MWCNT-Fe<sub>3</sub>O<sub>4</sub>@Pul and MWCNT-NiO@Pul after 24 h of immobilization at pH 7.0. The optimal pH and temperature were found to be 5.5 and 45 °C for free pullulanase, whereas the corresponding values were 5.5 and 50 °C for both immobilized pullulanase preparations. The thermal stabilities of MWCNT-Fe<sub>3</sub>O<sub>4</sub>@Pul and MWCNT-NiO@Pul increased by 6.2- and 8.2-fold, respectively, at 50 °C. The catalytic efficiencies of MWCNT-Fe<sub>3</sub>O<sub>4</sub>@Pul and MWCNT-NiO@Pul were calculated to be 0.8- and 1.1-fold that of free pullulanase, respectively. After 24 h of hydrolysis, MOS yields were determined to be 470 and 490 mg MOS/g pullulan for MWCNT-Fe<sub>3</sub>O<sub>4</sub>@Pul and MWCNT-NiO@Pul, respectively. The remaining activities were 86% and 85% for MWCNT-Fe<sub>3</sub>O<sub>4</sub>@Pul and MWCNT-NiO@Pul after 10 reuses, respectively.</p></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":"78 18","pages":"9529 - 9542"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-024-03764-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, Fe3O4-coated multi-walled carbon nanotubes (MWCNT-Fe3O4) or nickel oxide-coated multi-walled carbon nanotubes (MWCNT-NiO) were activated with 3-Glycidyloxypropyl)trimethoxysilane (3-GPTMS) to create oxirane groups. Pullulanase from Bacillus licheniformis was covalently immobilized on these magnetic MWCNTs to obtain magnetically separable immobilized pullulanase preparations (MWCNT-Fe3O4@Pul or MWCNT-NiO@Pul) for producing maltooligosaccharides (MOSs) from pullulan. The highest recovered activity values were 78% and 85% respectively, for MWCNT-Fe3O4@Pul and MWCNT-NiO@Pul after 24 h of immobilization at pH 7.0. The optimal pH and temperature were found to be 5.5 and 45 °C for free pullulanase, whereas the corresponding values were 5.5 and 50 °C for both immobilized pullulanase preparations. The thermal stabilities of MWCNT-Fe3O4@Pul and MWCNT-NiO@Pul increased by 6.2- and 8.2-fold, respectively, at 50 °C. The catalytic efficiencies of MWCNT-Fe3O4@Pul and MWCNT-NiO@Pul were calculated to be 0.8- and 1.1-fold that of free pullulanase, respectively. After 24 h of hydrolysis, MOS yields were determined to be 470 and 490 mg MOS/g pullulan for MWCNT-Fe3O4@Pul and MWCNT-NiO@Pul, respectively. The remaining activities were 86% and 85% for MWCNT-Fe3O4@Pul and MWCNT-NiO@Pul after 10 reuses, respectively.
Chemical PapersChemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍:
Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.