A Biomimetic Wheel-Track Wall-Climbing Robot Based on Rolling Adsorption Mechanism

IF 4.9 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Kai Cao, Jiajun Xu, Huan Shen, Mengcheng Zhao, Zihao Guo, Yi Sun, Linsen Xu, Aihong Ji
{"title":"A Biomimetic Wheel-Track Wall-Climbing Robot Based on Rolling Adsorption Mechanism","authors":"Kai Cao,&nbsp;Jiajun Xu,&nbsp;Huan Shen,&nbsp;Mengcheng Zhao,&nbsp;Zihao Guo,&nbsp;Yi Sun,&nbsp;Linsen Xu,&nbsp;Aihong Ji","doi":"10.1007/s42235-024-00603-6","DOIUrl":null,"url":null,"abstract":"<div><p>Wall climbing robots have a wide range of applications in the field of transportation, petrochemicals, aerial construction, and other monitoring prospects; however, for complex defects on the wall, it is easy for the robot to fall off from attachment. This paper puts forward the bionic wheel-tracked rolling adsorption wall-climbing robots. The paper designs flexible material as sealing material for the negative pressure chamber of wall-climbing robots through the imitation of the biological mechanism of the insect adhesion pads. The material has the advantages of wear resistance, strong wall adaptability, large load, simple structure, etc., and it has a highly reliable and stable adsorption ability on unstructured and complex walls. The mathematical model of adsorption of the wall-crawling robot is constructed in different wall environments, and the kinematic analysis is carried out. The influence of the leakage on the adsorption capacity due to the deformation of the flexible sealing material, defects of the wall surface and the air ducts formed under different roughnesses is analyzed. Through the fabrication and experiment of the prototype, the correctness of the theoretical analysis is verified. The measured load capacity of the robot is 2.47 times its own weight, and it has great obstacle-crossing ability.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 6","pages":"2779 - 2791"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00603-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Wall climbing robots have a wide range of applications in the field of transportation, petrochemicals, aerial construction, and other monitoring prospects; however, for complex defects on the wall, it is easy for the robot to fall off from attachment. This paper puts forward the bionic wheel-tracked rolling adsorption wall-climbing robots. The paper designs flexible material as sealing material for the negative pressure chamber of wall-climbing robots through the imitation of the biological mechanism of the insect adhesion pads. The material has the advantages of wear resistance, strong wall adaptability, large load, simple structure, etc., and it has a highly reliable and stable adsorption ability on unstructured and complex walls. The mathematical model of adsorption of the wall-crawling robot is constructed in different wall environments, and the kinematic analysis is carried out. The influence of the leakage on the adsorption capacity due to the deformation of the flexible sealing material, defects of the wall surface and the air ducts formed under different roughnesses is analyzed. Through the fabrication and experiment of the prototype, the correctness of the theoretical analysis is verified. The measured load capacity of the robot is 2.47 times its own weight, and it has great obstacle-crossing ability.

Abstract Image

基于滚动吸附机制的仿生轮履爬墙机器人
爬壁机器人在交通运输、石油化工、高空建筑等监控领域有着广泛的应用前景,但对于壁面上的复杂缺陷,机器人很容易从附着处脱落。本文提出了仿生轮履滚动吸附爬壁机器人。论文通过模仿昆虫粘附垫的生物机理,设计出柔性材料作为爬壁机器人负压舱的密封材料。该材料具有耐磨、墙体适应性强、载荷大、结构简单等优点,在非结构化复杂墙体上具有高可靠性和稳定性的吸附能力。构建了爬壁机器人在不同墙壁环境下的吸附数学模型,并进行了运动学分析。分析了柔性密封材料的变形、墙壁表面的缺陷以及不同粗糙度下形成的风道对吸附能力的影响。通过原型的制作和实验,验证了理论分析的正确性。实测机器人的负载能力是其自重的 2.47 倍,具有很强的越障能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bionic Engineering
Journal of Bionic Engineering 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
10.00%
发文量
162
审稿时长
10.0 months
期刊介绍: The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to: Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion. Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials. Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices. Development of bioinspired computation methods and artificial intelligence for engineering applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信