{"title":"Sustainable water-activated metal–air paper batteries based on waste biomass-based electrocatalysts†","authors":"Kosuke Ishibashi and Hiroshi Yabu","doi":"10.1039/D4SU00607K","DOIUrl":null,"url":null,"abstract":"<p >In this study, we synthesized a biomass-derived carbon alloy catalyst, termed “nano-blood charcoal (NBC),” using dried blood meal and cellulose nanofibers (CNFs) sourced from sea pineapple shells. This catalyst demonstrated high activity under neutral conditions and enabled the successful fabrication of a high-output, environmentally friendly water-activated magnesium–air paper battery. The open circuit voltage (OCV) of the cell was 1.57 V, and the maximum current density was 161 mA cm<small><sup>−2</sup></small>. The maximum power density was 55.7 mW cm<small><sup>−2</sup></small>, and the capacity of a single paper battery cell was 749 mW h g<small><sub>(Mg)</sub></small><small><sup>−1</sup></small>. Additionally, the oxygen evolution reaction (OER) performance of NBC was also evaluated, and it contributed to realize a rechargeable Mg–air paper battery.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 12","pages":" 4046-4051"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00607k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00607k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we synthesized a biomass-derived carbon alloy catalyst, termed “nano-blood charcoal (NBC),” using dried blood meal and cellulose nanofibers (CNFs) sourced from sea pineapple shells. This catalyst demonstrated high activity under neutral conditions and enabled the successful fabrication of a high-output, environmentally friendly water-activated magnesium–air paper battery. The open circuit voltage (OCV) of the cell was 1.57 V, and the maximum current density was 161 mA cm−2. The maximum power density was 55.7 mW cm−2, and the capacity of a single paper battery cell was 749 mW h g(Mg)−1. Additionally, the oxygen evolution reaction (OER) performance of NBC was also evaluated, and it contributed to realize a rechargeable Mg–air paper battery.