CeNiO3 perovskite nanoparticles synthesized using gelatin as a chelating agent for CO2 dry reforming of methane†

Usman Zahid, Wahid Sidik Sarifuddin, Abdul Hanif Mahadi, Holilah, Didik Prasetyoko and Hasliza Bahruji
{"title":"CeNiO3 perovskite nanoparticles synthesized using gelatin as a chelating agent for CO2 dry reforming of methane†","authors":"Usman Zahid, Wahid Sidik Sarifuddin, Abdul Hanif Mahadi, Holilah, Didik Prasetyoko and Hasliza Bahruji","doi":"10.1039/D4SU00268G","DOIUrl":null,"url":null,"abstract":"<p >CeNiO<small><sub>3</sub></small> perovskite nanoparticles were synthesized using gelatin as a chelating agent to catalyze the CO<small><sub>2</sub></small> dry reforming reaction. The optimization of gelatin concentration affects the formation of Ni coordinated on the B-sites of CeNiO<small><sub>3</sub></small>. CeNiO<small><sub>3</sub></small> shows catalytic stability for 60 h with ∼50% CO<small><sub>2</sub></small>/CH<small><sub>4</sub></small> conversion and a H<small><sub>2</sub></small>/CO ratio of ∼0.8 when obtained using low concentrations of gelatin (0.05 g, 0.1 g). The exsolution of Ni nanoparticles from CeNiO<small><sub>3</sub></small> structures occurs during reduction treatment, expanding the crystal lattices of CeO<small><sub>2</sub></small>. A high gelatin concentration (0.2 g) reduced Ni mobility and restricted Ni–Ce contacts. The uncoordinated Ni in CeNiO<small><sub>3</sub></small> exposes a high surface area (10.12 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>) for CH<small><sub>4</sub></small> dissociation, consequently increasing the H<small><sub>2</sub></small>/CO ratio to ∼1.5 with 78% CH<small><sub>4</sub></small> and 53% CO<small><sub>2</sub></small> conversion. <em>In situ</em> DRIFTS analysis showed that CH<small><sub>4</sub></small> readily dissociates in the absence of CO<small><sub>2</sub></small>, but CO<small><sub>2</sub></small> completes the reaction cycles by removing the carbon as CO gas.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 12","pages":" 3806-3816"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00268g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00268g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

CeNiO3 perovskite nanoparticles were synthesized using gelatin as a chelating agent to catalyze the CO2 dry reforming reaction. The optimization of gelatin concentration affects the formation of Ni coordinated on the B-sites of CeNiO3. CeNiO3 shows catalytic stability for 60 h with ∼50% CO2/CH4 conversion and a H2/CO ratio of ∼0.8 when obtained using low concentrations of gelatin (0.05 g, 0.1 g). The exsolution of Ni nanoparticles from CeNiO3 structures occurs during reduction treatment, expanding the crystal lattices of CeO2. A high gelatin concentration (0.2 g) reduced Ni mobility and restricted Ni–Ce contacts. The uncoordinated Ni in CeNiO3 exposes a high surface area (10.12 m2 g−1) for CH4 dissociation, consequently increasing the H2/CO ratio to ∼1.5 with 78% CH4 and 53% CO2 conversion. In situ DRIFTS analysis showed that CH4 readily dissociates in the absence of CO2, but CO2 completes the reaction cycles by removing the carbon as CO gas.

Abstract Image

以明胶为螯合剂合成的 CeNiO3 包晶纳米粒子用于甲烷的 CO2 干法转化†。
使用明胶作为螯合剂合成了 CeNiO3 包晶纳米粒子,用于催化二氧化碳干重整反应。明胶浓度的优化会影响 CeNiO3 的 B 位上配位镍的形成。当使用低浓度明胶(0.05 克和 0.1 克)时,CeNiO3 的催化稳定性可达 60 小时,CO2/CH4 转化率为 50%,H2/CO 比率为 0.8。在还原处理过程中,CeNiO3 结构中的镍纳米颗粒发生溶解,从而扩大了 CeO2 的晶格。高浓度明胶(0.2 克)降低了镍的流动性,限制了镍-铈接触。CeNiO3 中的非配位镍为 CH4 解离提供了高表面积(10.12 m2 g-1),从而将 H2/CO 比率提高到 1.5,CH4 转化率为 78%,CO2 转化率为 53%。原位 DRIFTS 分析表明,在没有 CO2 的情况下,CH4 很容易解离,但 CO2 会以 CO 气体的形式除去碳,从而完成反应循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信