{"title":"Quantum Optimization of Reconfigurable Intelligent Surfaces for Mitigating Multipath Fading in Wireless Networks","authors":"Emanuel Colella;Luca Bastianelli;Valter Mariani Primiani;Zhen Peng;Franco Moglie;Gabriele Gradoni","doi":"10.1109/JMMCT.2024.3494037","DOIUrl":null,"url":null,"abstract":"Wireless communication technology has become important in modern life. Real-world radio environments present significant challenges, particularly concerning latency and multipath fading. A promising solution is represented by reconfigurable intelligent surfaces (RIS), which can manipulate electromagnetic waves to enhance transmission quality. In this study, we introduce a novel approach that employs the quantum approximate optimization algorithm (QAOA) to efficiently configure RIS in multipath environments. Applying the spin glass (SG) theoretical framework to describe chaotic systems, along with a variable noise model, we propose a quantum-based minimization algorithm to optimize RIS in various electromagnetic scenarios affected by multipath fading. The method involves training a parameterized quantum circuit using a mathematical model that scales with the size of the RIS. When applied to different EM scenarios, it directly identifies the optimal RIS configuration. This approach eliminates the need for large datasets for training, validation, and testing, streamlines, and accelerates the training process. Furthermore, the algorithm will not need to be rerun for each individual scenario. In particular, our analysis considers a system with one transmitting antenna, multiple receiving antennas, and varying noise levels. The results show that QAOA enhances the performance of RIS in both noise-free and noisy environments, highlighting the potential of quantum computing to address the complexities of RIS optimization and improve the performance of the wireless network.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"403-414"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747251","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10747251/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless communication technology has become important in modern life. Real-world radio environments present significant challenges, particularly concerning latency and multipath fading. A promising solution is represented by reconfigurable intelligent surfaces (RIS), which can manipulate electromagnetic waves to enhance transmission quality. In this study, we introduce a novel approach that employs the quantum approximate optimization algorithm (QAOA) to efficiently configure RIS in multipath environments. Applying the spin glass (SG) theoretical framework to describe chaotic systems, along with a variable noise model, we propose a quantum-based minimization algorithm to optimize RIS in various electromagnetic scenarios affected by multipath fading. The method involves training a parameterized quantum circuit using a mathematical model that scales with the size of the RIS. When applied to different EM scenarios, it directly identifies the optimal RIS configuration. This approach eliminates the need for large datasets for training, validation, and testing, streamlines, and accelerates the training process. Furthermore, the algorithm will not need to be rerun for each individual scenario. In particular, our analysis considers a system with one transmitting antenna, multiple receiving antennas, and varying noise levels. The results show that QAOA enhances the performance of RIS in both noise-free and noisy environments, highlighting the potential of quantum computing to address the complexities of RIS optimization and improve the performance of the wireless network.