SPGPU: Spatially Programmed GPU

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Shizhuo Zhu;Illia Shkirko;Jacob Levinson;Zhengrong Wang;Tony Nowatzki
{"title":"SPGPU: Spatially Programmed GPU","authors":"Shizhuo Zhu;Illia Shkirko;Jacob Levinson;Zhengrong Wang;Tony Nowatzki","doi":"10.1109/LCA.2024.3499339","DOIUrl":null,"url":null,"abstract":"Communication is a critical bottleneck for GPUs, manifesting as energy and performance overheads due to network-on-chip (NoC) delay and congestion. While many algorithms exhibit locality among thread blocks and accessed data, modern GPUs lack the interface to exploit this locality: GPU thread blocks are mapped to cores obliviously. In this work, we explore a simple extension to the conventional GPU programming interface to enable control over the spatial placement of data and threads, yielding new opportunities for aggressive locality optimizations within a GPU kernel. Across 7 workloads that can take advantage of these optimizations, for a 32 (or 128) SM GPU: we achieve a 1.28× (1.54×) speedup and 35% (44%) reduction in NoC traffic, compared to baseline non-spatial GPUs.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 2","pages":"223-226"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10753470/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Communication is a critical bottleneck for GPUs, manifesting as energy and performance overheads due to network-on-chip (NoC) delay and congestion. While many algorithms exhibit locality among thread blocks and accessed data, modern GPUs lack the interface to exploit this locality: GPU thread blocks are mapped to cores obliviously. In this work, we explore a simple extension to the conventional GPU programming interface to enable control over the spatial placement of data and threads, yielding new opportunities for aggressive locality optimizations within a GPU kernel. Across 7 workloads that can take advantage of these optimizations, for a 32 (or 128) SM GPU: we achieve a 1.28× (1.54×) speedup and 35% (44%) reduction in NoC traffic, compared to baseline non-spatial GPUs.
SPGPU:空间编程 GPU
通信是 GPU 的一个关键瓶颈,由于片上网络(NoC)延迟和拥塞,通信表现为能耗和性能开销。虽然许多算法在线程块和访问数据之间表现出局部性,但现代 GPU 缺乏利用这种局部性的接口:GPU 线程块是被无意识地映射到内核上的。在这项工作中,我们探索了对传统 GPU 编程接口的简单扩展,以实现对数据和线程空间位置的控制,为在 GPU 内核中进行积极的位置优化提供新的机会。与基线非空间 GPU 相比,在 7 种可利用这些优化的工作负载中,对于 32(或 128)SM GPU,我们实现了 1.28 倍(1.54 倍)的速度提升和 35%(44%)的 NoC 流量减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信