{"title":"Effect of flow rate on spatio-temporal deterioration of concrete under flowing sulfate attack","authors":"Fujian Yang, Zhihao Zhao, Yuan Liu, Man Li, Jinliang Song, Dawei Hu, Hui Zhou","doi":"10.1016/j.cemconres.2024.107734","DOIUrl":null,"url":null,"abstract":"Flowing effect on concrete deterioration caused by sulfate attack at varying flow rates was studied. It was found that an increased flow rate can expedite the weakening of the concrete's elastic modulus in the short term, thus causing an earlier onset of this weakening. However, the long-term deterioration of the elastic modulus remains unaffected by the flow rate due to the limited amount of products responsible for concrete deterioration. Notably, the deterioration depth or rate of the elastic modulus increases with higher flow rates due to the scouring effect of sulfate flow. To quantify this acceleration effect, an acceleration coefficient was defined, representing the impact of flow rate on the weakening process of concrete. It is approximately 1.20 for every 0.5 m/s increase in flow rate within the tested range. This coefficient provides a useful metric to assess the durability of concrete to sulfate attack under varying flow conditions.","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"25 1","pages":""},"PeriodicalIF":10.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cemconres.2024.107734","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Flowing effect on concrete deterioration caused by sulfate attack at varying flow rates was studied. It was found that an increased flow rate can expedite the weakening of the concrete's elastic modulus in the short term, thus causing an earlier onset of this weakening. However, the long-term deterioration of the elastic modulus remains unaffected by the flow rate due to the limited amount of products responsible for concrete deterioration. Notably, the deterioration depth or rate of the elastic modulus increases with higher flow rates due to the scouring effect of sulfate flow. To quantify this acceleration effect, an acceleration coefficient was defined, representing the impact of flow rate on the weakening process of concrete. It is approximately 1.20 for every 0.5 m/s increase in flow rate within the tested range. This coefficient provides a useful metric to assess the durability of concrete to sulfate attack under varying flow conditions.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.