Electronic and geometric effects in an Au@NiO core–shell nanocatalyst on the oxidative esterification of aldehydes†

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2024-11-27 DOI:10.1039/D4NR03302G
Shaoqi Zhan, Haohong Song, Zili Wu and De-en Jiang
{"title":"Electronic and geometric effects in an Au@NiO core–shell nanocatalyst on the oxidative esterification of aldehydes†","authors":"Shaoqi Zhan, Haohong Song, Zili Wu and De-en Jiang","doi":"10.1039/D4NR03302G","DOIUrl":null,"url":null,"abstract":"<p >Strong metal–support interactions (SMSIs) are important in heterogeneous catalysis to control stability, activity, and selectivity. Core–shell nanostructures as a unique SMSI system not only stabilize the metal nanoparticles in the core, but also offer tunable structural and electronic properties <em>via</em> their interaction with the support shell. The Au@NiO<small><sub><em>x</em></sub></small> core–shell system, for example, is the first commercial nanogold catalyst to produce bulk chemicals <em>via</em> the oxidative esterification of aldehydes. However, how the SMSI effect in Au@NiO<small><sub><em>x</em></sub></small> manifests on its oxidative esterification activity is unclear. Here we use a model of an Au<small><sub>13</sub></small>@(NiO)<small><sub>48</sub></small> core–shell nanocatalyst to examine the Au–NiO interaction and the associated electronic and geometric factors in enabling the oxidation of a hemiacetal (an intermediate from a ready reaction between an aldehyde and an alcohol) to an ester. We found 1.27 (e<small><sup>−</sup></small>) electrons flowing from the NiO shell to the Au core, leading to a higher oxide state of Ni atoms and the stabilization of key intermediates on the NiO shell. More importantly, lower activation energy was found on the Au<small><sub>13</sub></small>@(NiO)<small><sub>48</sub></small> catalyst than on the Au(111) and NiO(100) surfaces for the rate-limiting step. Microkinetic modeling confirmed the high activity of the Au<small><sub>13</sub></small>@(NiO)<small><sub>48</sub></small> catalyst in ester production in the experimental temperature range. Our work demonstrates the unique geometric and electronic effects of the Au@NiO<small><sub><em>x</em></sub></small> core–shell nanostructure on the catalytic oxidative esterification of aldehydes.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 3","pages":" 1317-1325"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d4nr03302g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr03302g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Strong metal–support interactions (SMSIs) are important in heterogeneous catalysis to control stability, activity, and selectivity. Core–shell nanostructures as a unique SMSI system not only stabilize the metal nanoparticles in the core, but also offer tunable structural and electronic properties via their interaction with the support shell. The Au@NiOx core–shell system, for example, is the first commercial nanogold catalyst to produce bulk chemicals via the oxidative esterification of aldehydes. However, how the SMSI effect in Au@NiOx manifests on its oxidative esterification activity is unclear. Here we use a model of an Au13@(NiO)48 core–shell nanocatalyst to examine the Au–NiO interaction and the associated electronic and geometric factors in enabling the oxidation of a hemiacetal (an intermediate from a ready reaction between an aldehyde and an alcohol) to an ester. We found 1.27 (e) electrons flowing from the NiO shell to the Au core, leading to a higher oxide state of Ni atoms and the stabilization of key intermediates on the NiO shell. More importantly, lower activation energy was found on the Au13@(NiO)48 catalyst than on the Au(111) and NiO(100) surfaces for the rate-limiting step. Microkinetic modeling confirmed the high activity of the Au13@(NiO)48 catalyst in ester production in the experimental temperature range. Our work demonstrates the unique geometric and electronic effects of the Au@NiOx core–shell nanostructure on the catalytic oxidative esterification of aldehydes.

Abstract Image

Au@NiO 核壳纳米催化剂在醛氧化酯化过程中的电子和几何效应
强金属-支撑相互作用(SMSI)对于控制异相催化的稳定性、活性和选择性非常重要。作为一种独特的 SMSI 系统,核壳纳米结构不仅能稳定核中的金属纳米粒子,还能通过其与支撑壳的相互作用提供可调的结构和电子特性。例如,Au@NiOx 核壳系统是首个通过醛的氧化酯化反应生产大宗化学品的商用纳米金催化剂。但 Au@NiOx 中的 SMSI 效应如何体现在其氧化酯化活性上还不清楚。在此,我们使用 Au13@(NiO)48 核壳纳米催化剂模型来研究 Au-NiO 在将半缩醛(醛与醇反应的中间产物)氧化为酯的过程中的相互作用以及相关的电子和几何因素。我们发现有 1.27 个电子从氧化镍壳流向金核,导致镍原子的氧化态升高,并使氧化镍壳上的关键中间产物趋于稳定。更重要的是,在限速步骤中,Au13@(NiO)48 催化剂的活化能低于 Au(111) 和 NiO(100) 表面。微动力学模型证实了 Au13@(NiO)48 催化剂在实验温度范围内生产酯的高活性。我们的工作证明了 Au@NiOx 核壳纳米结构对醛的催化氧化酯化具有独特的几何和电子效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信