{"title":"Detecting Collagen by Machine Learning Improved Photoacoustic Spectral Analysis for Breast Cancer Diagnostics: Feasibility Studies With Murine Models","authors":"Jiayan Li, Lu Bai, Yingna Chen, Junmei Cao, Jingtao Zhu, Wenxiang Zhi, Qian Cheng","doi":"10.1002/jbio.202400371","DOIUrl":null,"url":null,"abstract":"<p>Collagen, a key structural component of the extracellular matrix, undergoes significant remodeling during carcinogenesis. However, the important role of collagen levels in breast cancer diagnostics still lacks effective in vivo detection techniques to provide a deeper understanding. This study presents photoacoustic spectral analysis improved by machine learning as a promising non-invasive diagnostic method, focusing on exploring collagen as a salient biomarker. Murine model experiments revealed more profound associations of collagen with other cancer components than in normal tissues. Moreover, an optimal set of feature wavelengths was identified by a genetic algorithm for enhanced diagnostic performance, among which 75% were from collagen-dominated absorption wavebands. Using optimal spectra, the diagnostic algorithm achieved 72% accuracy, 66% sensitivity, and 78% specificity, surpassing full-range spectra by 6%, 4%, and 8%, respectively. The proposed photoacoustic methods examine the feasibility of offering valuable biochemical insights into existing techniques, showing great potential for early-stage cancer detection.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400371","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400371","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Collagen, a key structural component of the extracellular matrix, undergoes significant remodeling during carcinogenesis. However, the important role of collagen levels in breast cancer diagnostics still lacks effective in vivo detection techniques to provide a deeper understanding. This study presents photoacoustic spectral analysis improved by machine learning as a promising non-invasive diagnostic method, focusing on exploring collagen as a salient biomarker. Murine model experiments revealed more profound associations of collagen with other cancer components than in normal tissues. Moreover, an optimal set of feature wavelengths was identified by a genetic algorithm for enhanced diagnostic performance, among which 75% were from collagen-dominated absorption wavebands. Using optimal spectra, the diagnostic algorithm achieved 72% accuracy, 66% sensitivity, and 78% specificity, surpassing full-range spectra by 6%, 4%, and 8%, respectively. The proposed photoacoustic methods examine the feasibility of offering valuable biochemical insights into existing techniques, showing great potential for early-stage cancer detection.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.