Bangcheng Zhang , Shuo Gao , Shiyuan Lv , Nan Jia , Jie Wang , Bo Li , Guanyu Hu
{"title":"A performance degradation assessment method for complex electromechanical systems based on adaptive evidential reasoning rule","authors":"Bangcheng Zhang , Shuo Gao , Shiyuan Lv , Nan Jia , Jie Wang , Bo Li , Guanyu Hu","doi":"10.1016/j.isatra.2024.11.026","DOIUrl":null,"url":null,"abstract":"<div><div>The evidence reasoning (ER) rule has been widely used in various fields to deal with both quantitative and qualitative information with uncertainty. However, when analyzing dynamic systems, the importance of various indicators frequently changes with time and working conditions, such as performance degradation assessment of complex electromechanical systems, and the weights of the traditional evidence reasoning rules cannot be appropriately adjusted. To solve this problem, this paper proposes an adaptive evidence reasoning (AER) rule that can adjust weights according to different times and working conditions. The AER rule has two unique features: adaptive weight operation under time division and adaptive weight operation under working-condition division, which are used to solve the problem of dynamic weight adjustment under different times and working conditions. The CMA-ES algorithm is used to optimize the model parameters. Two case studies of performance degradation assessment are established to prove the advantage of the AER rule: a computer numerical control experiment and a simulation experiment of turbofan aeroengine. The results verify the effectiveness and practicability of the proposed method.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"156 ","pages":"Pages 408-422"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001905782400538X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The evidence reasoning (ER) rule has been widely used in various fields to deal with both quantitative and qualitative information with uncertainty. However, when analyzing dynamic systems, the importance of various indicators frequently changes with time and working conditions, such as performance degradation assessment of complex electromechanical systems, and the weights of the traditional evidence reasoning rules cannot be appropriately adjusted. To solve this problem, this paper proposes an adaptive evidence reasoning (AER) rule that can adjust weights according to different times and working conditions. The AER rule has two unique features: adaptive weight operation under time division and adaptive weight operation under working-condition division, which are used to solve the problem of dynamic weight adjustment under different times and working conditions. The CMA-ES algorithm is used to optimize the model parameters. Two case studies of performance degradation assessment are established to prove the advantage of the AER rule: a computer numerical control experiment and a simulation experiment of turbofan aeroengine. The results verify the effectiveness and practicability of the proposed method.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.