Piotr Sierant, Maciej Lewenstein, Antonello Scardicchio, Lev Vidmar, Jakub Zakrzewski
{"title":"Many-body localization in the age of classical computing<sup />.","authors":"Piotr Sierant, Maciej Lewenstein, Antonello Scardicchio, Lev Vidmar, Jakub Zakrzewski","doi":"10.1088/1361-6633/ad9756","DOIUrl":null,"url":null,"abstract":"<p><p>Statistical mechanics provides a framework for describing the physics of large, complex many-body systems using only a few macroscopic parameters to determine the state of the system. For isolated quantum many-body systems, such a description is achieved via the eigenstate thermalization hypothesis (ETH), which links thermalization, ergodicity and quantum chaotic behavior. However, tendency towards thermalization is not observed at finite system sizes and evolution times in a robust many-body localization (MBL) regime found numerically and experimentally in the dynamics of interacting many-body systems at strong disorder. Although the phenomenology of the MBL regime is well-established, the central question remains unanswered: under what conditions does the MBL<i>regime</i>give rise to an MBL<i>phase</i>, in which the thermalization does not occur even in the<i>asymptotic</i>limit of infinite system size and evolution time? This review focuses on recent numerical investigations aiming to clarify the status of the MBL phase, and it establishes the critical open questions about the dynamics of disordered many-body systems. The last decades of research have brought an unprecedented new variety of tools and indicators to study the breakdown of ergodicity, ranging from spectral and wave function measures, matrix elements of observables, through quantities probing unitary quantum dynamics, to transport and quantum information measures. We give a comprehensive overview of these approaches and attempt to provide a unified understanding of their main features. We emphasize general trends towards ergodicity with increasing length and time scales, which exclude naive single-parameter scaling hypothesis, necessitate the use of more refined scaling procedures, and prevent unambiguous extrapolations of numerical results to the asymptotic limit. Providing a concise description of numerical methods for studying ETH and MBL, we explore various approaches to tackle the question of the MBL phase. Persistent finite size drifts towards ergodicity consistently emerge in quantities derived from eigenvalues and eigenvectors of disordered many-body systems. The drifts are related to continuous inching towards ergodicity and non-vanishing transport observed in the dynamics of many-body systems, even at strong disorder. These phenomena impede the understanding of microscopic processes at the ETH-MBL crossover. Nevertheless, the abrupt slowdown of dynamics with increasing disorder strength provides premises suggesting the proximity of the MBL phase. This review concludes that the questions about thermalization and its failure in disordered many-body systems remain a captivating area open for further explorations.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on progress in physics. Physical Society (Great Britain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6633/ad9756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Statistical mechanics provides a framework for describing the physics of large, complex many-body systems using only a few macroscopic parameters to determine the state of the system. For isolated quantum many-body systems, such a description is achieved via the eigenstate thermalization hypothesis (ETH), which links thermalization, ergodicity and quantum chaotic behavior. However, tendency towards thermalization is not observed at finite system sizes and evolution times in a robust many-body localization (MBL) regime found numerically and experimentally in the dynamics of interacting many-body systems at strong disorder. Although the phenomenology of the MBL regime is well-established, the central question remains unanswered: under what conditions does the MBLregimegive rise to an MBLphase, in which the thermalization does not occur even in theasymptoticlimit of infinite system size and evolution time? This review focuses on recent numerical investigations aiming to clarify the status of the MBL phase, and it establishes the critical open questions about the dynamics of disordered many-body systems. The last decades of research have brought an unprecedented new variety of tools and indicators to study the breakdown of ergodicity, ranging from spectral and wave function measures, matrix elements of observables, through quantities probing unitary quantum dynamics, to transport and quantum information measures. We give a comprehensive overview of these approaches and attempt to provide a unified understanding of their main features. We emphasize general trends towards ergodicity with increasing length and time scales, which exclude naive single-parameter scaling hypothesis, necessitate the use of more refined scaling procedures, and prevent unambiguous extrapolations of numerical results to the asymptotic limit. Providing a concise description of numerical methods for studying ETH and MBL, we explore various approaches to tackle the question of the MBL phase. Persistent finite size drifts towards ergodicity consistently emerge in quantities derived from eigenvalues and eigenvectors of disordered many-body systems. The drifts are related to continuous inching towards ergodicity and non-vanishing transport observed in the dynamics of many-body systems, even at strong disorder. These phenomena impede the understanding of microscopic processes at the ETH-MBL crossover. Nevertheless, the abrupt slowdown of dynamics with increasing disorder strength provides premises suggesting the proximity of the MBL phase. This review concludes that the questions about thermalization and its failure in disordered many-body systems remain a captivating area open for further explorations.