Statistical foundations of person parameter estimation in the Thurstonian IRT model for forced-choice and pairwise comparison designs.

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Safir Yousfi
{"title":"Statistical foundations of person parameter estimation in the Thurstonian IRT model for forced-choice and pairwise comparison designs.","authors":"Safir Yousfi","doi":"10.1111/bmsp.12364","DOIUrl":null,"url":null,"abstract":"<p><p>The statistical foundations of person parameter estimation for the multivariate Thurstonian item response theory (TIRT) model of pairwise comparison and forced-choice (FC) ranking data are elaborated, and several misconceptions in IRT and TIRT are addressed. It is shown that directional information (i.e. multivariate information as defined by Reckase & Kinley, 1991; Applied Psychological Measurement, 15, 361) is not suited to quantify the precision of the estimates unless the Fisher information matrix is diagonal. The asymptotic covariance can be quantified by the inverse Fisher information matrix if the genuine likelihood is used and by the inverse Godambe information for independence likelihood estimation that results from ignoring within-block dependencies of pairwise comparisons. Analytical expressions are provided for the genuine likelihood and the Fisher information matrix for a generalized TIRT model that comprises binary pairwise comparison and ranking designs, which enables maximum likelihood estimation (MLE) and Bayesian estimation (maximum a posteriori probability with normal and Jeffreys prior) of person parameters. The bias of the MLE is quantified, and methods of bias prevention and bias correction are introduced. The correct marginal likelihood of graded pairwise comparisons is provided that might be used for person parameter estimation based on the independence likelihood.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12364","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The statistical foundations of person parameter estimation for the multivariate Thurstonian item response theory (TIRT) model of pairwise comparison and forced-choice (FC) ranking data are elaborated, and several misconceptions in IRT and TIRT are addressed. It is shown that directional information (i.e. multivariate information as defined by Reckase & Kinley, 1991; Applied Psychological Measurement, 15, 361) is not suited to quantify the precision of the estimates unless the Fisher information matrix is diagonal. The asymptotic covariance can be quantified by the inverse Fisher information matrix if the genuine likelihood is used and by the inverse Godambe information for independence likelihood estimation that results from ignoring within-block dependencies of pairwise comparisons. Analytical expressions are provided for the genuine likelihood and the Fisher information matrix for a generalized TIRT model that comprises binary pairwise comparison and ranking designs, which enables maximum likelihood estimation (MLE) and Bayesian estimation (maximum a posteriori probability with normal and Jeffreys prior) of person parameters. The bias of the MLE is quantified, and methods of bias prevention and bias correction are introduced. The correct marginal likelihood of graded pairwise comparisons is provided that might be used for person parameter estimation based on the independence likelihood.

强制选择和成对比较设计的瑟斯顿 IRT 模型中人的参数估计的统计基础。
本文阐述了成对比较和强迫选择(FC)排序数据的多元瑟斯顿项目反应理论(TIRT)模型的人参数估计的统计基础,并探讨了 IRT 和 TIRT 中的几个误解。研究表明,除非费雪信息矩阵是对角线的,否则方向信息(即 Reckase 和 Kinley 1991 年在应用心理测量杂志第 15 卷第 361 期上定义的多元信息)不适合量化估计值的精度。如果使用真实似然估计,渐近协方差可通过逆费雪信息矩阵进行量化;如果使用独立似然估计,则可通过逆戈达姆贝信息进行量化。对于包含二元成对比较和排序设计的广义 TIRT 模型,提供了真实似然和费舍尔信息矩阵的分析表达式,从而可以对人的参数进行最大似然估计(MLE)和贝叶斯估计(具有正态和杰弗里斯先验的最大后验概率)。对最大似然估计的偏差进行了量化,并介绍了防止偏差和纠正偏差的方法。提供了分级成对比较的正确边际似然,可用于基于独立似然的人参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信