{"title":"The Polypyrimidine Tract-Binding Protein Is a Transacting Factor for the Dengue Virus Internal Ribosome Entry Site.","authors":"Leandro Fernández-García, Jenniffer Angulo, Marcelo López-Lastra","doi":"10.3390/v16111757","DOIUrl":null,"url":null,"abstract":"<p><p><i>Dengue virus</i> (DENV) is an enveloped, positive sense, single-stranded RNA virus belonging to the <i>Flaviviridae</i>. Translation initiation of the DENV mRNA (vRNA) can occur following a cap-dependent, 5'-3'end-dependent internal ribosome entry site (IRES)-independent or IRES-dependent mechanism. This study evaluated the activity of DENV IRES in BHK-21 cells and the role of the polypyrimidine-tract binding protein (PTB) isoforms PTB1, PTB2, and PTB4 as IRES-transacting factors (ITAFs) for the DENV IRES. The results show that DENV-IRES activity is stimulated in DENV-replicating BHK-21 cells and cells expressing the <i>Foot-and-mouth disease virus</i> leader or <i>Human rhinovirus</i> 2A proteases. Protease activity was necessary, although a complete shutdown of cap-dependent translation initiation was not a requirement to stimulate DENV IRES activity. Regarding PTB, the results show that PTB1 > PTB2 > PTB4 stimulates DENV-IRES activity in BHK-21 cells. Mutations in the PTB RNA recognition motifs (RRMs), RRM1/RRM2 or RRM3/RRM4, differentially impact PTB1, PTB2, and PTB4's ability to promote DENV IRES-mediated translation initiation in BHK-21 cells. PTB1-induced DENV-IRES stimulation is rescinded when RRM1/RRM2 or RRM3/RRM4 are disrupted. Mutations in RRM1/RRM2 or RRM3/RRM4 do not affect the ITAF activity of PTB2. Mutating RRM3/RRM4, but not RRM1/RRM2, abolishes the ability of PTB4 to stimulate the DENV IRES. Thus, PTB1, PTB2, and PTB4 are ITAFs for the DENV IRES.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"16 11","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599071/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v16111757","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dengue virus (DENV) is an enveloped, positive sense, single-stranded RNA virus belonging to the Flaviviridae. Translation initiation of the DENV mRNA (vRNA) can occur following a cap-dependent, 5'-3'end-dependent internal ribosome entry site (IRES)-independent or IRES-dependent mechanism. This study evaluated the activity of DENV IRES in BHK-21 cells and the role of the polypyrimidine-tract binding protein (PTB) isoforms PTB1, PTB2, and PTB4 as IRES-transacting factors (ITAFs) for the DENV IRES. The results show that DENV-IRES activity is stimulated in DENV-replicating BHK-21 cells and cells expressing the Foot-and-mouth disease virus leader or Human rhinovirus 2A proteases. Protease activity was necessary, although a complete shutdown of cap-dependent translation initiation was not a requirement to stimulate DENV IRES activity. Regarding PTB, the results show that PTB1 > PTB2 > PTB4 stimulates DENV-IRES activity in BHK-21 cells. Mutations in the PTB RNA recognition motifs (RRMs), RRM1/RRM2 or RRM3/RRM4, differentially impact PTB1, PTB2, and PTB4's ability to promote DENV IRES-mediated translation initiation in BHK-21 cells. PTB1-induced DENV-IRES stimulation is rescinded when RRM1/RRM2 or RRM3/RRM4 are disrupted. Mutations in RRM1/RRM2 or RRM3/RRM4 do not affect the ITAF activity of PTB2. Mutating RRM3/RRM4, but not RRM1/RRM2, abolishes the ability of PTB4 to stimulate the DENV IRES. Thus, PTB1, PTB2, and PTB4 are ITAFs for the DENV IRES.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.