Dustin Eckhardt, Jana Mueller, Jonas Friedrich, Jan-P Klee, Irakli Sardlishvili, Lars E Walter, Stefanie Fey, Peter Czermak, Denise Salzig
{"title":"Production of Oncolytic Measles Virus in Vero Cells: Impact of Culture Medium and Multiplicity of Infection.","authors":"Dustin Eckhardt, Jana Mueller, Jonas Friedrich, Jan-P Klee, Irakli Sardlishvili, Lars E Walter, Stefanie Fey, Peter Czermak, Denise Salzig","doi":"10.3390/v16111740","DOIUrl":null,"url":null,"abstract":"<p><p>Oncolytic measles virus (MeV) is a promising anti-cancer treatment. However, the production of high titers of infectious MeV (typically 10<sup>7</sup>-10<sup>9</sup> TCID<sub>50</sub> per dose) is challenging because the virus is unstable under typical production conditions. The objective of this study was to investigate how the multiplicity of infection (MOI) and different media-a serum-containing medium (SCM), a serum-free medium (SFM) and two chemically defined media (CDM)-affect MeV production. We infected Vero cells at MOIs of 0.02, 0.2 or 2 TCID<sub>50</sub> cell<sup>-1</sup> and the lowest MOI resulted in the largest number of infected cells towards the end of the production period. However, this did not equate to higher maximum MeV titers, which were similar for all the MOIs. The medium had a moderate effect, generating maximum titers of 0.89-2.17 × 10<sup>6</sup>, 1.08-1.25 × 10<sup>6</sup> and 4.58-9.90 × 10<sup>5</sup> TCID<sub>50</sub> mL<sup>-1</sup> for the SCM, SFM and CDM, respectively. Infection at a low MOI often required longer process times to reach maximum yields. On the other hand, a high MOI requires a large amount of MeV stock. We would therefore recommend a mid-range MOI of 0.2 TCID<sub>50</sub> cell<sup>-1</sup> for MeV production. Our findings show that SCM, SFM and CDM are equally suitable for MeV production in terms of yield and process time. This will allow MeV production in serum-free conditions, addressing the safety risks and ethical concerns associated with the use of serum.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"16 11","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599022/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v16111740","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oncolytic measles virus (MeV) is a promising anti-cancer treatment. However, the production of high titers of infectious MeV (typically 107-109 TCID50 per dose) is challenging because the virus is unstable under typical production conditions. The objective of this study was to investigate how the multiplicity of infection (MOI) and different media-a serum-containing medium (SCM), a serum-free medium (SFM) and two chemically defined media (CDM)-affect MeV production. We infected Vero cells at MOIs of 0.02, 0.2 or 2 TCID50 cell-1 and the lowest MOI resulted in the largest number of infected cells towards the end of the production period. However, this did not equate to higher maximum MeV titers, which were similar for all the MOIs. The medium had a moderate effect, generating maximum titers of 0.89-2.17 × 106, 1.08-1.25 × 106 and 4.58-9.90 × 105 TCID50 mL-1 for the SCM, SFM and CDM, respectively. Infection at a low MOI often required longer process times to reach maximum yields. On the other hand, a high MOI requires a large amount of MeV stock. We would therefore recommend a mid-range MOI of 0.2 TCID50 cell-1 for MeV production. Our findings show that SCM, SFM and CDM are equally suitable for MeV production in terms of yield and process time. This will allow MeV production in serum-free conditions, addressing the safety risks and ethical concerns associated with the use of serum.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.