A strategy to design protein-based antagonists against type I cytokine receptors.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
PLoS Biology Pub Date : 2024-11-26 eCollection Date: 2024-11-01 DOI:10.1371/journal.pbio.3002883
Timo Ullrich, Olga Klimenkova, Christoph Pollmann, Asma Lasram, Valeriia Hatskovska, Kateryna Maksymenko, Matej Milijaš-Jotić, Lukas Schenk, Claudia Lengerke, Marcus D Hartmann, Jacob Piehler, Julia Skokowa, Mohammad ElGamacy
{"title":"A strategy to design protein-based antagonists against type I cytokine receptors.","authors":"Timo Ullrich, Olga Klimenkova, Christoph Pollmann, Asma Lasram, Valeriia Hatskovska, Kateryna Maksymenko, Matej Milijaš-Jotić, Lukas Schenk, Claudia Lengerke, Marcus D Hartmann, Jacob Piehler, Julia Skokowa, Mohammad ElGamacy","doi":"10.1371/journal.pbio.3002883","DOIUrl":null,"url":null,"abstract":"<p><p>Excessive cytokine signaling resulting from dysregulation of a cytokine or its receptor can be a main driver of cancer, autoimmune, or hematopoietic disorders. Here, we leverage protein design to create tailored cytokine receptor blockers with idealized properties. Specifically, we aimed to tackle the granulocyte-colony stimulating factor receptor (G-CSFR), a mediator of different types of leukemia and autoinflammatory diseases. By modifying designed G-CSFR binders, we engineered hyper-stable proteins that function as nanomolar signaling antagonists. X-ray crystallography showed atomic-level agreement with the experimental structure of an exemplary design. Furthermore, the most potent design blocks G-CSFR in acute myeloid leukemia cells and primary human hematopoietic stem cells. Thus, the resulting designs can be used for inhibiting or homing to G-CSFR-expressing cells. Our results also demonstrate that similarly designed cytokine mimics can be used to derive antagonists to tackle other type I cytokine receptors.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002883"},"PeriodicalIF":9.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11596305/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002883","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Excessive cytokine signaling resulting from dysregulation of a cytokine or its receptor can be a main driver of cancer, autoimmune, or hematopoietic disorders. Here, we leverage protein design to create tailored cytokine receptor blockers with idealized properties. Specifically, we aimed to tackle the granulocyte-colony stimulating factor receptor (G-CSFR), a mediator of different types of leukemia and autoinflammatory diseases. By modifying designed G-CSFR binders, we engineered hyper-stable proteins that function as nanomolar signaling antagonists. X-ray crystallography showed atomic-level agreement with the experimental structure of an exemplary design. Furthermore, the most potent design blocks G-CSFR in acute myeloid leukemia cells and primary human hematopoietic stem cells. Thus, the resulting designs can be used for inhibiting or homing to G-CSFR-expressing cells. Our results also demonstrate that similarly designed cytokine mimics can be used to derive antagonists to tackle other type I cytokine receptors.

设计基于蛋白质的 I 型细胞因子受体拮抗剂的策略。
细胞因子或其受体失调导致的细胞因子信号过度传递可能是癌症、自身免疫或造血疾病的主要驱动因素。在这里,我们利用蛋白质设计创造出具有理想特性的定制细胞因子受体阻断剂。具体来说,我们的目标是解决粒细胞集落刺激因子受体(G-CSFR)的问题,它是不同类型白血病和自身炎症性疾病的介质。通过修改设计的 G-CSFR 结合剂,我们设计出了超稳定蛋白,可作为纳摩尔信号拮抗剂发挥作用。X 射线晶体学显示,该设计与实验结构在原子水平上一致。此外,最有效的设计还能阻断急性髓性白血病细胞和原代人类造血干细胞中的 G-CSFR。因此,由此产生的设计可用于抑制或归巢表达 G-CSFR 的细胞。我们的研究结果还证明,类似设计的细胞因子模拟物也可用于衍生拮抗剂,以解决其他 I 型细胞因子受体的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信