Systematic characterization of plant-associated bacteria that can degrade indole-3-acetic acid.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
Lanxiang Wang, Yue Liu, Haoran Ni, Wenlong Zuo, Haimei Shi, Weixin Liao, Hongbin Liu, Jiajia Chen, Yang Bai, Hong Yue, Ancheng Huang, Jonathan Friedman, Tong Si, Yinggao Liu, Moxian Chen, Lei Dai
{"title":"Systematic characterization of plant-associated bacteria that can degrade indole-3-acetic acid.","authors":"Lanxiang Wang, Yue Liu, Haoran Ni, Wenlong Zuo, Haimei Shi, Weixin Liao, Hongbin Liu, Jiajia Chen, Yang Bai, Hong Yue, Ancheng Huang, Jonathan Friedman, Tong Si, Yinggao Liu, Moxian Chen, Lei Dai","doi":"10.1371/journal.pbio.3002921","DOIUrl":null,"url":null,"abstract":"<p><p>Plant-associated microbiota affect pant growth and development by regulating plant hormones homeostasis. Indole-3-acetic acid (IAA), a well-known plant hormone, can be produced by various plant-associated bacteria. However, the prevalence of bacteria with the capacity to degrade IAA in the rhizosphere has not been systematically studied. In this study, we analyzed the IAA degradation capabilities of bacterial isolates from the roots of Arabidopsis and rice. Using genomics analysis and in vitro assays, we found that 21 out of 183 taxonomically diverse bacterial isolates possess the ability to degrade IAA. Through comparative genomics and transcriptomic assays, we identified iac-like or iad-like operon in the genomes of these IAA degraders. Additionally, the putative regulator of the operon was found to be highly conserved among these strains through protein structure similarity analysis. Some of the IAA degraders could utilize IAA as their carbon and energy source. In planta, most of the IAA degrading strains mitigated Arabidopsis and rice seedling root growth inhibition (RGI) triggered by exogenous IAA. Moreover, RGI caused by complex synthetic bacterial community can be alleviated by introducing IAA degraders. Importantly, we observed increased colonization preference of IAA degraders from soil to root according to the frequency of the biomarker genes in metagenome-assembled genomes (MAGs) collected from different habitats, suggesting that there is a close association between IAA degraders and IAA producers. In summary, our findings further the understanding of the functional diversity and potential biological roles of plant-associated bacteria in host plant root morphogenesis.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002921"},"PeriodicalIF":9.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002921","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Plant-associated microbiota affect pant growth and development by regulating plant hormones homeostasis. Indole-3-acetic acid (IAA), a well-known plant hormone, can be produced by various plant-associated bacteria. However, the prevalence of bacteria with the capacity to degrade IAA in the rhizosphere has not been systematically studied. In this study, we analyzed the IAA degradation capabilities of bacterial isolates from the roots of Arabidopsis and rice. Using genomics analysis and in vitro assays, we found that 21 out of 183 taxonomically diverse bacterial isolates possess the ability to degrade IAA. Through comparative genomics and transcriptomic assays, we identified iac-like or iad-like operon in the genomes of these IAA degraders. Additionally, the putative regulator of the operon was found to be highly conserved among these strains through protein structure similarity analysis. Some of the IAA degraders could utilize IAA as their carbon and energy source. In planta, most of the IAA degrading strains mitigated Arabidopsis and rice seedling root growth inhibition (RGI) triggered by exogenous IAA. Moreover, RGI caused by complex synthetic bacterial community can be alleviated by introducing IAA degraders. Importantly, we observed increased colonization preference of IAA degraders from soil to root according to the frequency of the biomarker genes in metagenome-assembled genomes (MAGs) collected from different habitats, suggesting that there is a close association between IAA degraders and IAA producers. In summary, our findings further the understanding of the functional diversity and potential biological roles of plant-associated bacteria in host plant root morphogenesis.

能降解吲哚-3-乙酸的植物相关细菌的系统特征。
植物相关微生物群通过调节植物激素的平衡来影响植物的生长和发育。吲哚-3-乙酸(IAA)是一种著名的植物激素,可由多种植物相关细菌产生。然而,对根瘤菌层中具有降解 IAA 能力的细菌的普遍性尚未进行系统研究。本研究分析了拟南芥和水稻根部细菌分离物的 IAA 降解能力。通过基因组学分析和体外试验,我们发现 183 个分类学上不同的细菌分离物中有 21 个具有降解 IAA 的能力。通过比较基因组学和转录组测定,我们在这些IAA降解菌的基因组中发现了iac-like或iad-like操作子。此外,通过蛋白质结构相似性分析,我们发现该操作子的推定调节因子在这些菌株中高度保守。一些 IAA 降解菌可以利用 IAA 作为碳源和能量源。在植物体内,大多数IAA降解菌株都能缓解外源IAA引发的拟南芥和水稻幼苗根系生长抑制(RGI)。此外,通过引入 IAA 降解菌,复杂的合成细菌群落引起的 RGI 也能得到缓解。重要的是,根据从不同生境收集的元基因组组装基因组(MAGs)中生物标记基因的频率,我们观察到IAA降解菌从土壤到根部的定殖偏好增加,这表明IAA降解菌与IAA生产者之间存在密切联系。总之,我们的研究结果进一步加深了人们对植物相关细菌在寄主植物根系形态发生过程中的功能多样性和潜在生物学作用的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信