Methods in causal inference. Part 1: causal diagrams and confounding.

IF 2.2 Q1 ANTHROPOLOGY
Evolutionary Human Sciences Pub Date : 2024-09-27 eCollection Date: 2024-01-01 DOI:10.1017/ehs.2024.35
Joseph A Bulbulia
{"title":"Methods in causal inference. Part 1: causal diagrams and confounding.","authors":"Joseph A Bulbulia","doi":"10.1017/ehs.2024.35","DOIUrl":null,"url":null,"abstract":"<p><p>Causal inference requires contrasting counterfactual states under specified interventions. Obtaining these contrasts from data depends on explicit assumptions and careful, multi-step workflows. Causal diagrams are crucial for clarifying the identifiability of counterfactual contrasts from data. Here, I explain how to use causal directed acyclic graphs (DAGs) to determine if and how causal effects can be identified from non-experimental observational data, offering practical reporting tips and suggestions to avoid common pitfalls.</p>","PeriodicalId":36414,"journal":{"name":"Evolutionary Human Sciences","volume":"6 ","pages":"e40"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588567/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Human Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/ehs.2024.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Causal inference requires contrasting counterfactual states under specified interventions. Obtaining these contrasts from data depends on explicit assumptions and careful, multi-step workflows. Causal diagrams are crucial for clarifying the identifiability of counterfactual contrasts from data. Here, I explain how to use causal directed acyclic graphs (DAGs) to determine if and how causal effects can be identified from non-experimental observational data, offering practical reporting tips and suggestions to avoid common pitfalls.

因果推断方法。第 1 部分:因果图和混杂。
因果推理需要对特定干预措施下的反事实状态进行对比。从数据中获取这些对比取决于明确的假设和谨慎的多步骤工作流程。因果图对于从数据中明确反事实对比的可识别性至关重要。在此,我将解释如何使用因果有向无环图(DAG)来确定是否以及如何从非实验观察数据中识别因果效应,并提供实用的报告技巧和建议,以避免常见的陷阱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolutionary Human Sciences
Evolutionary Human Sciences Social Sciences-Cultural Studies
CiteScore
4.60
自引率
11.50%
发文量
49
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信