Methods in causal inference. Part 2: Interaction, mediation, and time-varying treatments.

IF 2.2 Q1 ANTHROPOLOGY
Evolutionary Human Sciences Pub Date : 2024-10-01 eCollection Date: 2024-01-01 DOI:10.1017/ehs.2024.32
Joseph A Bulbulia
{"title":"Methods in causal inference. Part 2: Interaction, mediation, and time-varying treatments.","authors":"Joseph A Bulbulia","doi":"10.1017/ehs.2024.32","DOIUrl":null,"url":null,"abstract":"<p><p>The analysis of 'moderation', 'interaction', 'mediation' and 'longitudinal growth' is widespread in the human sciences, yet subject to confusion. To clarify these concepts, it is essential to state causal estimands, which requires the specification of counterfactual contrasts for a target population on an appropriate scale. Once causal estimands are defined, we must consider their identification. I employ causal directed acyclic graphs and single world intervention graphs to elucidate identification workflows. I show that when multiple treatments exist, common methods for statistical inference, such as multi-level regressions and statistical structural equation models, cannot typically recover the causal quantities we seek. By properly framing and addressing causal questions of interaction, mediation, and time-varying treatments, we can expose the limitations of popular methods and guide researchers to a clearer understanding of the causal questions that animate our interests.</p>","PeriodicalId":36414,"journal":{"name":"Evolutionary Human Sciences","volume":"6 ","pages":"e41"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588565/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Human Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/ehs.2024.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The analysis of 'moderation', 'interaction', 'mediation' and 'longitudinal growth' is widespread in the human sciences, yet subject to confusion. To clarify these concepts, it is essential to state causal estimands, which requires the specification of counterfactual contrasts for a target population on an appropriate scale. Once causal estimands are defined, we must consider their identification. I employ causal directed acyclic graphs and single world intervention graphs to elucidate identification workflows. I show that when multiple treatments exist, common methods for statistical inference, such as multi-level regressions and statistical structural equation models, cannot typically recover the causal quantities we seek. By properly framing and addressing causal questions of interaction, mediation, and time-varying treatments, we can expose the limitations of popular methods and guide researchers to a clearer understanding of the causal questions that animate our interests.

因果推论方法。第 2 部分:交互、中介和时变处理。
调节"、"互动"、"中介 "和 "纵向增长 "的分析在人文科学中非常普遍,但却容易引起混淆。要弄清这些概念,就必须说明因果估计值,这就需要在适当的规模上为目标人群指定反事实对比。一旦定义了因果估计值,我们就必须考虑如何识别它们。我采用因果有向无环图和单一世界干预图来阐明识别工作流程。我的研究表明,当存在多种处理方法时,常用的统计推断方法,如多层次回归和统计结构方程模型,通常无法恢复我们所寻求的因果数量。通过正确界定和解决交互、中介和时变处理的因果问题,我们可以揭示流行方法的局限性,并引导研究人员更清晰地理解激发我们兴趣的因果问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolutionary Human Sciences
Evolutionary Human Sciences Social Sciences-Cultural Studies
CiteScore
4.60
自引率
11.50%
发文量
49
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信