Ubiquitination of P53 Regulated by Ubiquitin-Specific Protease 14 Delays the Invasion of Hepatitis B Virus and the Development of Hepatitis.

IF 1.5 4区 医学 Q4 IMMUNOLOGY
Tao Bai, Rong-Yun Mai, Zhi-Hong Tang, Xiao-Bo Wang, Jie Chen, Jia-Zhou Ye, Meng Wei, Bin Zhang, Kai Li, Zhao-Min Gu, Fei-Xiang Wu, Le-Qun Li
{"title":"Ubiquitination of P53 Regulated by Ubiquitin-Specific Protease 14 Delays the Invasion of Hepatitis B Virus and the Development of Hepatitis.","authors":"Tao Bai, Rong-Yun Mai, Zhi-Hong Tang, Xiao-Bo Wang, Jie Chen, Jia-Zhou Ye, Meng Wei, Bin Zhang, Kai Li, Zhao-Min Gu, Fei-Xiang Wu, Le-Qun Li","doi":"10.1089/vim.2024.0066","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to explore the mechanism underlying the role of ubiquitin-specific protease 14 (USP14) in regulating P53 expression and influencing the development of hepatitis B. The animal and cell models of hepatitis B were constructed. The mRNA and protein expression of USP14, mouse double minute 2 (MDM2), and P53 were detected by western blot and qPCR. The USP14 overexpression vector was constructed. The pathological changes of liver tissue were detected by HE and Masson staining. Protein immunoprecipitation was used to detect the interaction between MDM2 and P53, as well as between MDM2 and USP14. The ubiquitination levels of P53 after USP14 overexpression were detected. qPCR and western blot were used to detect the expression of MDM2, Bcl-2, P53, Bax, and Caspase-1 <i>in vivo</i> and <i>in vitro</i>. Compared with the control group, the model group showed increased cell proliferation, increased expression of MDM2 and Bcl-2 in cells and liver tissue, and decreased expression of P53, Bax, and Caspase-1. Compared with the model group, overexpression of USP14 resulted in a decrease in MDM2 expression and an increase in P53 expression. After transfection with the USP14 overexpression plasmid, cell proliferation was inhibited, and the expression of MDM2 and Bcl-2 was decreased in cells and liver tissue, while the expression of P53, Bax, and Caspase-1 was increased. In the model of hepatitis B, USP14 upregulation downregulated MDM2 and promoted P53 deubiquitination to delay the invasion of hepatitis B virus and the development of hepatitis.</p>","PeriodicalId":23665,"journal":{"name":"Viral immunology","volume":"37 9","pages":"432-439"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viral immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/vim.2024.0066","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to explore the mechanism underlying the role of ubiquitin-specific protease 14 (USP14) in regulating P53 expression and influencing the development of hepatitis B. The animal and cell models of hepatitis B were constructed. The mRNA and protein expression of USP14, mouse double minute 2 (MDM2), and P53 were detected by western blot and qPCR. The USP14 overexpression vector was constructed. The pathological changes of liver tissue were detected by HE and Masson staining. Protein immunoprecipitation was used to detect the interaction between MDM2 and P53, as well as between MDM2 and USP14. The ubiquitination levels of P53 after USP14 overexpression were detected. qPCR and western blot were used to detect the expression of MDM2, Bcl-2, P53, Bax, and Caspase-1 in vivo and in vitro. Compared with the control group, the model group showed increased cell proliferation, increased expression of MDM2 and Bcl-2 in cells and liver tissue, and decreased expression of P53, Bax, and Caspase-1. Compared with the model group, overexpression of USP14 resulted in a decrease in MDM2 expression and an increase in P53 expression. After transfection with the USP14 overexpression plasmid, cell proliferation was inhibited, and the expression of MDM2 and Bcl-2 was decreased in cells and liver tissue, while the expression of P53, Bax, and Caspase-1 was increased. In the model of hepatitis B, USP14 upregulation downregulated MDM2 and promoted P53 deubiquitination to delay the invasion of hepatitis B virus and the development of hepatitis.

由泛素特异性蛋白酶 14 调控的 P53 泛素化能延缓乙型肝炎病毒的入侵和肝炎的发展
本研究旨在探讨泛素特异性蛋白酶 14(USP14)在调控 P53 表达和影响乙型肝炎发生发展中的作用机制。通过Western印迹和qPCR检测了USP14、小鼠双分化2(MDM2)和P53的mRNA和蛋白表达。构建了 USP14 的过表达载体。通过 HE 和 Masson 染色检测肝组织的病理变化。蛋白免疫沉淀用于检测 MDM2 与 P53 之间以及 MDM2 与 USP14 之间的相互作用。采用 qPCR 和 western 印迹法检测 MDM2、Bcl-2、P53、Bax 和 Caspase-1 在体内和体外的表达。与对照组相比,模型组细胞增殖增加,细胞和肝组织中MDM2和Bcl-2的表达增加,P53、Bax和Caspase-1的表达减少。与模型组相比,过表达 USP14 会导致 MDM2 表达下降,P53 表达上升。转染 USP14 过表达质粒后,细胞增殖受到抑制,细胞和肝组织中 MDM2 和 Bcl-2 的表达减少,而 P53、Bax 和 Caspase-1 的表达增加。在乙型肝炎模型中,上调 USP14 可下调 MDM2,促进 P53 去泛素化,从而延缓乙型肝炎病毒的入侵和肝炎的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Viral immunology
Viral immunology 医学-病毒学
CiteScore
3.60
自引率
0.00%
发文量
84
审稿时长
6-12 weeks
期刊介绍: Viral Immunology delivers cutting-edge peer-reviewed research on rare, emerging, and under-studied viruses, with special focus on analyzing mutual relationships between external viruses and internal immunity. Original research, reviews, and commentaries on relevant viruses are presented in clinical, translational, and basic science articles for researchers in multiple disciplines. Viral Immunology coverage includes: Human and animal viral immunology Research and development of viral vaccines, including field trials Immunological characterization of viral components Virus-based immunological diseases, including autoimmune syndromes Pathogenic mechanisms Viral diagnostics Tumor and cancer immunology with virus as the primary factor Viral immunology methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信