Dan Luo, Hansen Lin, Xingzhen Li, Yu Wang, Long Ye, Yuebang Mai, Peihao Wu, Zhuobiao Ni, Qingqi Lin, Rongliang Qiu
{"title":"The Dual Role of Natural Organic Matter in the Degradation of Organic Pollutants by Persulfate-Based Advanced Oxidation Processes: A Mini-Review.","authors":"Dan Luo, Hansen Lin, Xingzhen Li, Yu Wang, Long Ye, Yuebang Mai, Peihao Wu, Zhuobiao Ni, Qingqi Lin, Rongliang Qiu","doi":"10.3390/toxics12110770","DOIUrl":null,"url":null,"abstract":"<p><p>Persulfate-based advanced oxidation processes (PS-AOPs) are widely used to degrade significant amounts of organic pollutants (OPs) in water and soil matrices. The effectiveness of these processes is influenced by the presence of natural organic matter (NOM), which is ubiquitous in the environment. However, the mechanisms by which NOM affects the degradation of OPs in PS-AOPs remain poorly documented. This review systematically summarizes the dual effects of NOM in PS-AOPs, including inhibitory and promotional effects. It encompasses the entire process, detailing the interaction between PS and its activators, the fate of reactive oxygen species (ROS), and the transformation of OPs within PS-AOPs. Specifically, the inhibiting mechanisms include the prevention of PS activation, suppression of ROS fate, and conversion of intermediates to their parent compounds. In contrast, the promoting effects involve the enhancement of catalytic effectiveness, contributions to ROS generation, and improved interactions between NOM and OPs. Finally, further studies are required to elucidate the reaction mechanisms of NOM in PS-AOPs and explore the practical applications of PS-AOPs using actual NOM rather than model compounds.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 11","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598379/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12110770","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Persulfate-based advanced oxidation processes (PS-AOPs) are widely used to degrade significant amounts of organic pollutants (OPs) in water and soil matrices. The effectiveness of these processes is influenced by the presence of natural organic matter (NOM), which is ubiquitous in the environment. However, the mechanisms by which NOM affects the degradation of OPs in PS-AOPs remain poorly documented. This review systematically summarizes the dual effects of NOM in PS-AOPs, including inhibitory and promotional effects. It encompasses the entire process, detailing the interaction between PS and its activators, the fate of reactive oxygen species (ROS), and the transformation of OPs within PS-AOPs. Specifically, the inhibiting mechanisms include the prevention of PS activation, suppression of ROS fate, and conversion of intermediates to their parent compounds. In contrast, the promoting effects involve the enhancement of catalytic effectiveness, contributions to ROS generation, and improved interactions between NOM and OPs. Finally, further studies are required to elucidate the reaction mechanisms of NOM in PS-AOPs and explore the practical applications of PS-AOPs using actual NOM rather than model compounds.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.