{"title":"Spatial-Temporal Characteristics, Source Apportionment, and Health Risks of Atmospheric Volatile Organic Compounds in China: A Comprehensive Review.","authors":"Yangbing Wei, Xuexue Jing, Yaping Chen, Wenxin Sun, Yuzhe Zhang, Rencheng Zhu","doi":"10.3390/toxics12110787","DOIUrl":null,"url":null,"abstract":"<p><p>Volatile organic compounds (VOCs) are ubiquitous in the atmosphere, posing significant adverse impacts on air quality and human health. However, current research on atmospheric VOCs mainly focuses on specific regions or industries, without comprehensive national-level analysis. In this study, a total of 99 articles on atmospheric VOCs in China published from 2015 to 2024 were screened, and data on their concentrations, source apportionment, and health risks were extracted and summarized. The results revealed that the annual average concentrations of TVOCs and their groups in China generally increased and then decreased between 2011 and 2022, peaking in 2018-2019. A distinct seasonal pattern was observed, with the highest concentrations occurring in winter, followed by autumn, spring, and summer. TVOC emissions were highly concentrated in northern and eastern China, mainly contributed by alkanes and alkenes. Source apportionment of VOCs indicated that vehicle sources (32.9% ± 14.3%), industrial emissions (18.0% ± 12.8%), and other combustion sources (13.0% ± 13.0%) were the primary sources of VOCs in China. There was a significant positive correlation (<i>p</i> < 0.05) between the annual mean VOC concentration and population size, and a notable negative correlation (<i>p</i> < 0.05) with GDP per capita. Atmospheric VOCs had no non-carcinogenic risk (HI = 0.5) but exhibited a probable carcinogenic risk (7.5 × 10<sup>-5</sup>), with relatively high values for 1,2-dibromoethane, 1,2-dichloroethane, and naphthalene. The health risk was predominantly driven by halocarbons. These findings are essential for a better understanding of atmospheric VOCs and for developing more targeted VOC control measures.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 11","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598060/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12110787","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Volatile organic compounds (VOCs) are ubiquitous in the atmosphere, posing significant adverse impacts on air quality and human health. However, current research on atmospheric VOCs mainly focuses on specific regions or industries, without comprehensive national-level analysis. In this study, a total of 99 articles on atmospheric VOCs in China published from 2015 to 2024 were screened, and data on their concentrations, source apportionment, and health risks were extracted and summarized. The results revealed that the annual average concentrations of TVOCs and their groups in China generally increased and then decreased between 2011 and 2022, peaking in 2018-2019. A distinct seasonal pattern was observed, with the highest concentrations occurring in winter, followed by autumn, spring, and summer. TVOC emissions were highly concentrated in northern and eastern China, mainly contributed by alkanes and alkenes. Source apportionment of VOCs indicated that vehicle sources (32.9% ± 14.3%), industrial emissions (18.0% ± 12.8%), and other combustion sources (13.0% ± 13.0%) were the primary sources of VOCs in China. There was a significant positive correlation (p < 0.05) between the annual mean VOC concentration and population size, and a notable negative correlation (p < 0.05) with GDP per capita. Atmospheric VOCs had no non-carcinogenic risk (HI = 0.5) but exhibited a probable carcinogenic risk (7.5 × 10-5), with relatively high values for 1,2-dibromoethane, 1,2-dichloroethane, and naphthalene. The health risk was predominantly driven by halocarbons. These findings are essential for a better understanding of atmospheric VOCs and for developing more targeted VOC control measures.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.