An Assessment of Surface Contamination and Dermal Exposure to 5-Fluorouracil in Healthcare Settings by UPLC-MS/MS Using a New Atmospheric Pressure Ionization Source.
Matteo Creta, Eline Verscheure, Birgit Tans, Herman Devriese, An Devriendt, David Devolder, Robin Lebegge, Katrien Poels, Lode Godderis, Radu-Corneliu Duca, Jeroen A J Vanoirbeek
{"title":"An Assessment of Surface Contamination and Dermal Exposure to 5-Fluorouracil in Healthcare Settings by UPLC-MS/MS Using a New Atmospheric Pressure Ionization Source.","authors":"Matteo Creta, Eline Verscheure, Birgit Tans, Herman Devriese, An Devriendt, David Devolder, Robin Lebegge, Katrien Poels, Lode Godderis, Radu-Corneliu Duca, Jeroen A J Vanoirbeek","doi":"10.3390/toxics12110766","DOIUrl":null,"url":null,"abstract":"<p><p>5-Fluorouracil (5-FU) is a well-known cytostatic drug, which is often used in cancer treatments. Yet, it is also a very dangerous compound for people who are occupationally exposed to it for a long time, such as pharmacy employees, nurses and cleaning staff. We aimed to improve and implement a LC-MS/MS method for 5-FU quantification on surface contamination samples collected with swabs in a pharmacy department and outpatient nursing station of a university hospital. To improve the existing methods to quantify 5-FU, we compared a LC-MS/MS method using the frequently applied electrospray ionization source (ESI) with a UniSpray ionization source (USI). To determine the contamination of 5-FU in a pharmacy department preparing 5-FU infusion bags, which are then given to patients in the outpatient nursing stations, we collected multiple surface swabs of the laminar flow cabinets and frequently touched objects, before the preparation and administration of 5-FU and afterwards. Furthermore, we sampled the protective gloves and the bare hands of employees of the pharmacy department, involved in the preparation of the infusion bags. Using the USI source, we were able to reach the lowest limit of quantification (LOQ). With this technique, we were able to detect 5-FU contamination on the laminar flow cabinets and frequently used objects in the pharmacy department and the outpatient nursing station in the very low ng/cm<sup>2</sup> range. This contamination was mostly higher after preparation or administration than before. While we also found 5-FU on the protective gloves, we almost found no 5-FU on the skin of the pharmacy technicians preparing the 5-FU infusion bags. In conclusion, our method was able to detect very low concentrations of 5-FU contamination, but the contamination we found is very unlikely to result in any issues for the personnel working in these areas.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 11","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598772/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12110766","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
5-Fluorouracil (5-FU) is a well-known cytostatic drug, which is often used in cancer treatments. Yet, it is also a very dangerous compound for people who are occupationally exposed to it for a long time, such as pharmacy employees, nurses and cleaning staff. We aimed to improve and implement a LC-MS/MS method for 5-FU quantification on surface contamination samples collected with swabs in a pharmacy department and outpatient nursing station of a university hospital. To improve the existing methods to quantify 5-FU, we compared a LC-MS/MS method using the frequently applied electrospray ionization source (ESI) with a UniSpray ionization source (USI). To determine the contamination of 5-FU in a pharmacy department preparing 5-FU infusion bags, which are then given to patients in the outpatient nursing stations, we collected multiple surface swabs of the laminar flow cabinets and frequently touched objects, before the preparation and administration of 5-FU and afterwards. Furthermore, we sampled the protective gloves and the bare hands of employees of the pharmacy department, involved in the preparation of the infusion bags. Using the USI source, we were able to reach the lowest limit of quantification (LOQ). With this technique, we were able to detect 5-FU contamination on the laminar flow cabinets and frequently used objects in the pharmacy department and the outpatient nursing station in the very low ng/cm2 range. This contamination was mostly higher after preparation or administration than before. While we also found 5-FU on the protective gloves, we almost found no 5-FU on the skin of the pharmacy technicians preparing the 5-FU infusion bags. In conclusion, our method was able to detect very low concentrations of 5-FU contamination, but the contamination we found is very unlikely to result in any issues for the personnel working in these areas.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.