Husheem Michael, Gene W Weng, Mikaela M Vallas, Douglas Lovos, Ellen Chen, Paul Sheiffele, Wei Weng
{"title":"Metabolomics analysis reveals resembling metabolites between humanized γδ TCR mice and human plasma.","authors":"Husheem Michael, Gene W Weng, Mikaela M Vallas, Douglas Lovos, Ellen Chen, Paul Sheiffele, Wei Weng","doi":"10.1038/s41598-024-81003-y","DOIUrl":null,"url":null,"abstract":"<p><p>Gamma delta (γδ) T cells, which reside in mucosal and epithelial tissues, are integral to immune responses and are involved in various cancers, autoimmune, and infectious diseases. To study human γδ T cells to a translational level, we developed γδ humanized TCR-T1 (HuTCR-T1) mice using our TruHumanization platform. We compared the metabolomic profiles from plasma samples of wild-type (WT), γδ HuTCR-T1 mice, and humans using UHPLC-MS/MS. Untargeted metabolomics and lipidomics were used to screen all detectable metabolites. Principal component analysis revealed that the metabolomic profiles of γδ HuTCR-T1 mice closely resemble those of humans, with a clear segregation of metabolites between γδ HuTCR-T1 and WT mice. Most humanized γδ metabolites were classified as lipids, followed by organic compounds and amino acids. Pathway analysis identified significant alterations in the metabolism of tryptophan, tyrosine, sphingolipids, and glycerophospholipids, shifting these pathways towards a more human-like profile. Immunophenotyping showed that γδ HuTCR-T1 mice maintained normal proportions of both lymphoid and myeloid immune cell populations, closely resembling WT mice, with only a few exceptions. These findings demonstrate that the γδ HuTCR-T1 mouse model exhibits a metabolomic profile that is remarkably similar to that of humans, highlighting its potential as a relevant model for investigating the role of metabolites in disease development and progression. This model also offers an opportunity to discover therapeutic human TCRs.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"29321"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-81003-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Gamma delta (γδ) T cells, which reside in mucosal and epithelial tissues, are integral to immune responses and are involved in various cancers, autoimmune, and infectious diseases. To study human γδ T cells to a translational level, we developed γδ humanized TCR-T1 (HuTCR-T1) mice using our TruHumanization platform. We compared the metabolomic profiles from plasma samples of wild-type (WT), γδ HuTCR-T1 mice, and humans using UHPLC-MS/MS. Untargeted metabolomics and lipidomics were used to screen all detectable metabolites. Principal component analysis revealed that the metabolomic profiles of γδ HuTCR-T1 mice closely resemble those of humans, with a clear segregation of metabolites between γδ HuTCR-T1 and WT mice. Most humanized γδ metabolites were classified as lipids, followed by organic compounds and amino acids. Pathway analysis identified significant alterations in the metabolism of tryptophan, tyrosine, sphingolipids, and glycerophospholipids, shifting these pathways towards a more human-like profile. Immunophenotyping showed that γδ HuTCR-T1 mice maintained normal proportions of both lymphoid and myeloid immune cell populations, closely resembling WT mice, with only a few exceptions. These findings demonstrate that the γδ HuTCR-T1 mouse model exhibits a metabolomic profile that is remarkably similar to that of humans, highlighting its potential as a relevant model for investigating the role of metabolites in disease development and progression. This model also offers an opportunity to discover therapeutic human TCRs.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.