An Entropy-Based Clustering Algorithm for Real-Time High-Dimensional IoT Data Streams.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2024-11-20 DOI:10.3390/s24227412
Ibrahim Mutambik
{"title":"An Entropy-Based Clustering Algorithm for Real-Time High-Dimensional IoT Data Streams.","authors":"Ibrahim Mutambik","doi":"10.3390/s24227412","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid growth of data streams, propelled by the proliferation of sensors and Internet of Things (IoT) devices, presents significant challenges for real-time clustering of high-dimensional data. Traditional clustering algorithms struggle with high dimensionality, memory and time constraints, and adapting to dynamically evolving data. Existing dimensionality reduction methods often neglect feature ranking, leading to suboptimal clustering performance. To address these issues, we introduce E-Stream, a novel entropy-based clustering algorithm for high-dimensional data streams. E-Stream performs real-time feature ranking based on entropy within a sliding time window to identify the most informative features, which are then utilized with the DenStream algorithm for efficient clustering. We evaluated E-Stream using the NSL-KDD dataset, comparing it against DenStream, CluStream, and MR-Stream. The evaluation metrics included the average F-Measure, Jaccard Index, Fowlkes-Mallows Index, Purity, and Rand Index. The results show that E-Stream outperformed the baseline algorithms in both clustering accuracy and computational efficiency while effectively reducing dimensionality. E-Stream also demonstrated significantly less memory consumption and fewer computational requirements, highlighting its suitability for real-time processing of high-dimensional data streams. Despite its strengths, E-Stream requires manual parameter adjustment and assumes a consistent number of active features, which may limit its adaptability to diverse datasets. Future work will focus on developing a fully autonomous, parameter-free version of the algorithm, incorporating mechanisms to handle missing features and improving the management of evolving clusters to enhance robustness and adaptability in dynamic IoT environments.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 22","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24227412","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid growth of data streams, propelled by the proliferation of sensors and Internet of Things (IoT) devices, presents significant challenges for real-time clustering of high-dimensional data. Traditional clustering algorithms struggle with high dimensionality, memory and time constraints, and adapting to dynamically evolving data. Existing dimensionality reduction methods often neglect feature ranking, leading to suboptimal clustering performance. To address these issues, we introduce E-Stream, a novel entropy-based clustering algorithm for high-dimensional data streams. E-Stream performs real-time feature ranking based on entropy within a sliding time window to identify the most informative features, which are then utilized with the DenStream algorithm for efficient clustering. We evaluated E-Stream using the NSL-KDD dataset, comparing it against DenStream, CluStream, and MR-Stream. The evaluation metrics included the average F-Measure, Jaccard Index, Fowlkes-Mallows Index, Purity, and Rand Index. The results show that E-Stream outperformed the baseline algorithms in both clustering accuracy and computational efficiency while effectively reducing dimensionality. E-Stream also demonstrated significantly less memory consumption and fewer computational requirements, highlighting its suitability for real-time processing of high-dimensional data streams. Despite its strengths, E-Stream requires manual parameter adjustment and assumes a consistent number of active features, which may limit its adaptability to diverse datasets. Future work will focus on developing a fully autonomous, parameter-free version of the algorithm, incorporating mechanisms to handle missing features and improving the management of evolving clusters to enhance robustness and adaptability in dynamic IoT environments.

基于熵的实时高维物联网数据流聚类算法。
传感器和物联网(IoT)设备的普及推动了数据流的快速增长,给高维数据的实时聚类带来了巨大挑战。传统的聚类算法难以应对高维、内存和时间限制,以及适应动态变化的数据等问题。现有的降维方法往往忽略了特征排序,导致聚类性能不理想。为了解决这些问题,我们引入了 E-Stream,这是一种适用于高维数据流的基于熵的新型聚类算法。E-Stream 在滑动时间窗口内基于熵进行实时特征排序,以识别信息量最大的特征,然后利用 DenStream 算法进行高效聚类。我们使用 NSL-KDD 数据集对 E-Stream 进行了评估,并将其与 DenStream、CluStream 和 MR-Stream 进行了比较。评估指标包括平均 F-度量、Jaccard 指数、Fowlkes-Mallows 指数、纯度和 Rand 指数。结果表明,E-Stream 在有效降低维度的同时,在聚类精度和计算效率方面都优于基线算法。此外,E-Stream 还大大减少了内存消耗和计算需求,突出了其对高维数据流实时处理的适用性。尽管有这些优势,E-Stream 仍需要手动调整参数,并假定活动特征的数量保持一致,这可能会限制其对不同数据集的适应性。未来的工作重点是开发完全自主、无参数版本的算法,纳入处理缺失特征的机制,并改进对不断演化的集群的管理,以增强在动态物联网环境中的鲁棒性和适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信