Medicinal chemistry-based perspectives on thiophene and its derivatives: exploring structural insights to discover plausible druggable leads.

IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shikha Thakur, Devendra Kumar, Shivani Jaiswal, Kapil Kumar Goel, Pramod Rawat, Vivek Srivastava, Sonia Dhiman, Hemant R Jadhav, Ashish Ranjan Dwivedi
{"title":"Medicinal chemistry-based perspectives on thiophene and its derivatives: exploring structural insights to discover plausible druggable leads.","authors":"Shikha Thakur, Devendra Kumar, Shivani Jaiswal, Kapil Kumar Goel, Pramod Rawat, Vivek Srivastava, Sonia Dhiman, Hemant R Jadhav, Ashish Ranjan Dwivedi","doi":"10.1039/d4md00450g","DOIUrl":null,"url":null,"abstract":"<p><p>Thiophene is a privileged pharmacophore in medicinal chemistry owing to its diversified biological attributes. The thiophene moiety has been ranked 4th in the US FDA drug approval of small drug molecules, with around 7 drug approvals over the last decade. The present review covers USFDA-approved drugs possessing a thiophene ring system. Our analysis reveals that 26 drugs possessing thiophene nuclei have been approved under different pharmacological classes. The review further covers reported thiophene and its substituted analogues with diverse biological activities, including anti-diabetic, anticancer, anti-inflammatory, anticonvulsant, and antioxidant activity. Besides, a section is dedicated to appreciating the implications of structural bioinformatics in drug discovery. Additionally, the manuscript delves into structure-activity relationship studies to explore the chemical groups responsible for eliciting potential therapeutic activities. The review may provide invaluable insights for researchers working with thiophene nuclei in developing novel analogues with greater efficacy and fewer side effects.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588141/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1039/d4md00450g","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Thiophene is a privileged pharmacophore in medicinal chemistry owing to its diversified biological attributes. The thiophene moiety has been ranked 4th in the US FDA drug approval of small drug molecules, with around 7 drug approvals over the last decade. The present review covers USFDA-approved drugs possessing a thiophene ring system. Our analysis reveals that 26 drugs possessing thiophene nuclei have been approved under different pharmacological classes. The review further covers reported thiophene and its substituted analogues with diverse biological activities, including anti-diabetic, anticancer, anti-inflammatory, anticonvulsant, and antioxidant activity. Besides, a section is dedicated to appreciating the implications of structural bioinformatics in drug discovery. Additionally, the manuscript delves into structure-activity relationship studies to explore the chemical groups responsible for eliciting potential therapeutic activities. The review may provide invaluable insights for researchers working with thiophene nuclei in developing novel analogues with greater efficacy and fewer side effects.

基于药物化学的噻吩及其衍生物透视:探索结构洞察力,发现可行的药物线索。
噻吩因其多样化的生物属性而成为药物化学中的一个重要药源。在美国 FDA 批准的小分子药物中,噻吩分子排在第四位,在过去十年中大约有 7 种药物获得批准。本综述涵盖了美国 FDA 批准的具有噻吩环系统的药物。我们的分析表明,在不同的药理类别下,有 26 种具有噻吩核的药物获得了批准。本综述进一步涵盖了已报道的具有多种生物活性的噻吩及其取代类似物,包括抗糖尿病、抗癌、抗炎、抗惊厥和抗氧化活性。此外,手稿还专门用一个章节阐述了结构生物信息学在药物发现中的意义。此外,该手稿还深入探讨了结构-活性关系研究,以探索负责激发潜在治疗活性的化学基团。这篇综述可为研究人员利用噻吩核开发疗效更好、副作用更小的新型类似物提供宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
2.40%
发文量
129
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信