{"title":"Synthesis of TiO<sub>2</sub>-ZnO n-n Heterojunction with Excellent Visible Light-Driven Photodegradation of Tetracycline.","authors":"Ying Zhang, Xinkang Bo, Tao Zhu, Wei Zhao, Yumin Cui, Jianguo Chang","doi":"10.3390/nano14221802","DOIUrl":null,"url":null,"abstract":"<p><p>Zinc oxide-based photocatalysts with non-toxicity and low cost are promising candidates for the degradation of tetracycline. Despite the great success achieved in constructing n-n-type ZnO-based heterojunctions for the degradation of tetracycline under full-spectrum conditions, it is still challenging to realize rapid and efficient degradation of tetracycline under visible light using n-n-type ZnO-based heterojunctions, as they are constrained by the quick recombination of electron-hole pairs in ZnO. Here, we report highly efficient and stable n-n-type ZnO-TiO<sub>2</sub> heterojunctions under visible light conditions, with a degradation efficiency reaching 97% at 1 h under visible light, which is 1.2 times higher than that of pure zinc oxide, enabled by constructing an n-n-type heterojunction between ZnO and TiO<sub>2</sub> to form a built-in electric field. The photocatalytic degradation mechanism of n-n TiO<sub>2</sub>-ZnO to tetracycline is also proposed in detail. The demonstration of efficient and stable heterojunction-type ZnO photocatalysts under visible light is an important step toward commercialization and opens up new opportunities beyond conventional ZnO technologies, such as composite ZnO catalysts.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 22","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11597633/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14221802","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc oxide-based photocatalysts with non-toxicity and low cost are promising candidates for the degradation of tetracycline. Despite the great success achieved in constructing n-n-type ZnO-based heterojunctions for the degradation of tetracycline under full-spectrum conditions, it is still challenging to realize rapid and efficient degradation of tetracycline under visible light using n-n-type ZnO-based heterojunctions, as they are constrained by the quick recombination of electron-hole pairs in ZnO. Here, we report highly efficient and stable n-n-type ZnO-TiO2 heterojunctions under visible light conditions, with a degradation efficiency reaching 97% at 1 h under visible light, which is 1.2 times higher than that of pure zinc oxide, enabled by constructing an n-n-type heterojunction between ZnO and TiO2 to form a built-in electric field. The photocatalytic degradation mechanism of n-n TiO2-ZnO to tetracycline is also proposed in detail. The demonstration of efficient and stable heterojunction-type ZnO photocatalysts under visible light is an important step toward commercialization and opens up new opportunities beyond conventional ZnO technologies, such as composite ZnO catalysts.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.