High Absorption of Electromagnetic Waves Based on 3D PMMA@Mxene@Co3O4 Composite Microsphere.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2024-11-06 DOI:10.3390/ma17225427
Jinghe Guo, Yanxiang Wang, Lanzhou Wang, Bohan Ding, Yongbo Wang, Yue Sun, Shichao Dai, Donglong Wang, Shishuai Bi
{"title":"High Absorption of Electromagnetic Waves Based on 3D PMMA@Mxene@Co<sub>3</sub>O<sub>4</sub> Composite Microsphere.","authors":"Jinghe Guo, Yanxiang Wang, Lanzhou Wang, Bohan Ding, Yongbo Wang, Yue Sun, Shichao Dai, Donglong Wang, Shishuai Bi","doi":"10.3390/ma17225427","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing demand for effective electromagnetic wave (EMW) absorbers due to the proliferation of electronic devices and 5G communication systems, traditional wave-absorbing materials can no longer meet the current requirements. Thus, this research introduces a three-dimensional (3D) composite material consisting of PMMA@Mxene@Co₃O₄ microspheres, prepared through in situ self-assembly and hydrothermal growth. The strong electrical conductivity of Mxene, combined with the magnetic loss of Co₃O₄, ensures enhanced dielectric-magnetic synergy, leading to excellent EMW absorption. The study investigates the influence of varying Co₃O₄ content on the electromagnetic properties of the composite. Experimental results show that the optimal sample, with a thickness of 2.5 mm, achieves a minimum reflection loss (RL<sub>min</sub>) of -52.88 dB at 6.88 GHz and an effective absorption bandwidth (EAB) of 5.28 GHz. This work highlights the potential of 3D PMMA@Mxene@Co₃O₄ composites as high-performance microwave absorbers, providing a promising solution to EMW pollution. The findings offer valuable insights into material design strategies, demonstrate a promising pathway for developing lightweight, high-performance EMW absorbing materials by optimizing impedance matching and utilizing advanced microstructure design techniques.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 22","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595831/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17225427","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing demand for effective electromagnetic wave (EMW) absorbers due to the proliferation of electronic devices and 5G communication systems, traditional wave-absorbing materials can no longer meet the current requirements. Thus, this research introduces a three-dimensional (3D) composite material consisting of PMMA@Mxene@Co₃O₄ microspheres, prepared through in situ self-assembly and hydrothermal growth. The strong electrical conductivity of Mxene, combined with the magnetic loss of Co₃O₄, ensures enhanced dielectric-magnetic synergy, leading to excellent EMW absorption. The study investigates the influence of varying Co₃O₄ content on the electromagnetic properties of the composite. Experimental results show that the optimal sample, with a thickness of 2.5 mm, achieves a minimum reflection loss (RLmin) of -52.88 dB at 6.88 GHz and an effective absorption bandwidth (EAB) of 5.28 GHz. This work highlights the potential of 3D PMMA@Mxene@Co₃O₄ composites as high-performance microwave absorbers, providing a promising solution to EMW pollution. The findings offer valuable insights into material design strategies, demonstrate a promising pathway for developing lightweight, high-performance EMW absorbing materials by optimizing impedance matching and utilizing advanced microstructure design techniques.

基于三维 PMMA@Mxene@Co3O4 复合微球的高电磁波吸收。
随着电子设备和 5G 通信系统的普及,对有效电磁波(EMW)吸收剂的需求日益增加,传统的吸波材料已无法满足当前的要求。因此,本研究介绍了一种由 PMMA@Mxene@Co₃O₄ 微球组成的三维(3D)复合材料,该材料通过原位自组装和水热生长制备而成。Mxene 的强导电性与 Co₃O₄ 的磁损耗相结合,确保了增强的介电-磁协同作用,从而实现了出色的电磁波吸收。本研究探讨了不同 Co₃O₄ 含量对复合材料电磁特性的影响。实验结果表明,厚度为 2.5 mm 的最佳样品在 6.88 GHz 时的最小反射损耗 (RLmin) 为 -52.88 dB,有效吸收带宽 (EAB) 为 5.28 GHz。这项工作凸显了三维 PMMA@Mxene@Co₃O₄ 复合材料作为高性能微波吸收体的潜力,为解决电磁波污染提供了一种前景广阔的解决方案。研究结果为材料设计策略提供了有价值的见解,通过优化阻抗匹配和利用先进的微结构设计技术,为开发轻质、高性能电磁波吸收材料展示了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信