{"title":"Recent Advances in the Preparation, Antibacterial Mechanisms, and Applications of Chitosan.","authors":"Kunjian Wu, Ziyuan Yan, Ziyang Wu, Jiaye Li, Wendi Zhong, Linyu Ding, Tian Zhong, Tao Jiang","doi":"10.3390/jfb15110318","DOIUrl":null,"url":null,"abstract":"<p><p>Chitosan, a cationic polysaccharide derived from the deacetylation of chitin, is widely distributed in nature. Its antibacterial activity, biocompatibility, biodegradability, and non-toxicity have given it extensive uses in medicine, food, and cosmetics. However, the significant impact of variations in the physicochemical properties of chitosan extracted from different sources on its application efficacy, as well as the considerable differences in its antimicrobial mechanisms under varying conditions, limit the full realization of its biological functions. Therefore, this paper provides a comprehensive review of the structural characteristics of chitosan, its preparation methods from different sources, its antimicrobial mechanisms, and the factors influencing its antimicrobial efficacy. Furthermore, we highlight the latest applications of chitosan and its derivatives across various fields. We found that the use of microbial extraction shows promise as a new method for producing high-quality chitosan. By analyzing the different physicochemical properties of chitosan from various sources and the application of chitosan-based materials (such as nanoparticles, films, sponges, and hydrogels) prepared using different methods in biomedicine, food, agriculture, and cosmetics, we expect these findings to provide theoretical support for the broader utilization of chitosan.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 11","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11595984/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15110318","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chitosan, a cationic polysaccharide derived from the deacetylation of chitin, is widely distributed in nature. Its antibacterial activity, biocompatibility, biodegradability, and non-toxicity have given it extensive uses in medicine, food, and cosmetics. However, the significant impact of variations in the physicochemical properties of chitosan extracted from different sources on its application efficacy, as well as the considerable differences in its antimicrobial mechanisms under varying conditions, limit the full realization of its biological functions. Therefore, this paper provides a comprehensive review of the structural characteristics of chitosan, its preparation methods from different sources, its antimicrobial mechanisms, and the factors influencing its antimicrobial efficacy. Furthermore, we highlight the latest applications of chitosan and its derivatives across various fields. We found that the use of microbial extraction shows promise as a new method for producing high-quality chitosan. By analyzing the different physicochemical properties of chitosan from various sources and the application of chitosan-based materials (such as nanoparticles, films, sponges, and hydrogels) prepared using different methods in biomedicine, food, agriculture, and cosmetics, we expect these findings to provide theoretical support for the broader utilization of chitosan.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.