Kewei Wang, Qin He, Mengmeng Yang, Qincheng Qiao, Jun Chen, Jia Song, Nan Zang, Huiqing Hu, Longqing Xia, Yingyue Xiang, Fei Yan, Xinguo Hou, Li Chen
{"title":"Glycoengineered extracellular vesicles released from antibacterial hydrogel facilitate diabetic wound healing by promoting angiogenesis","authors":"Kewei Wang, Qin He, Mengmeng Yang, Qincheng Qiao, Jun Chen, Jia Song, Nan Zang, Huiqing Hu, Longqing Xia, Yingyue Xiang, Fei Yan, Xinguo Hou, Li Chen","doi":"10.1002/jev2.70013","DOIUrl":null,"url":null,"abstract":"<p>Diabetic wounds have become a global healthcare burden owing to impaired angiogenesis and persistent infections. Extracellular vesicles (EVs) can improve diabetic wounds, though their targeting ability is limited. In this study, we investigated the performance of a novel hydrogel dressing comprised of gelatin methacryloyl, glycoengineered EVs, and polylysine in treating infected diabetic wounds. High-throughput single-cell RNA sequencing (scRNA-seq) and immunofluorescence staining revealed that E-selectin (SELE) levels were higher in diabetic wounds than in non-diabetic wounds. Mesenchymal stromal cells (MSCs) were transfected with a lentivirus containing fucosyltransferase VII (FUT7) and a CD63-P19-Nluc vector to enhance the expression of sialyl Lewis X (sLeX), the ligand of E-selectin, on the surface of EVs (s-EVs) derived from transfected MSCs (s-MSCs). s-EVs can target human umbilical vein endothelial cells (HUVECs) under lipopolysaccharide stimulation and promote the function of stimulated HUVECs in vitro. To promote and sustain the release of s-EVs, we fabricated a gelatin methacryloyl (Gel)/poly-L-lysine methacryloyl (PL)-5 hydrogel with good antibacterial ability, biocompatibility and mechanical properties. In a mouse experiment, s-EV@Gel/PL-5 exhibited excellent angiogenesis and anti-inflammatory abilities and further promoted the healing of infected diabetic wounds. Our findings demonstrated the potential of the s-EV@Gel/PL-5 hydrogel in the clinical treatment of diabetic infectious wounds.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.70013","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic wounds have become a global healthcare burden owing to impaired angiogenesis and persistent infections. Extracellular vesicles (EVs) can improve diabetic wounds, though their targeting ability is limited. In this study, we investigated the performance of a novel hydrogel dressing comprised of gelatin methacryloyl, glycoengineered EVs, and polylysine in treating infected diabetic wounds. High-throughput single-cell RNA sequencing (scRNA-seq) and immunofluorescence staining revealed that E-selectin (SELE) levels were higher in diabetic wounds than in non-diabetic wounds. Mesenchymal stromal cells (MSCs) were transfected with a lentivirus containing fucosyltransferase VII (FUT7) and a CD63-P19-Nluc vector to enhance the expression of sialyl Lewis X (sLeX), the ligand of E-selectin, on the surface of EVs (s-EVs) derived from transfected MSCs (s-MSCs). s-EVs can target human umbilical vein endothelial cells (HUVECs) under lipopolysaccharide stimulation and promote the function of stimulated HUVECs in vitro. To promote and sustain the release of s-EVs, we fabricated a gelatin methacryloyl (Gel)/poly-L-lysine methacryloyl (PL)-5 hydrogel with good antibacterial ability, biocompatibility and mechanical properties. In a mouse experiment, s-EV@Gel/PL-5 exhibited excellent angiogenesis and anti-inflammatory abilities and further promoted the healing of infected diabetic wounds. Our findings demonstrated the potential of the s-EV@Gel/PL-5 hydrogel in the clinical treatment of diabetic infectious wounds.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.