Biosorption of petroleum compounds from aqueous solutions using walnut shells.

IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Hakimeh Sharififard, Mansoor Novin
{"title":"Biosorption of petroleum compounds from aqueous solutions using walnut shells.","authors":"Hakimeh Sharififard, Mansoor Novin","doi":"10.1080/15226514.2024.2433536","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, a walnut shell as a biosorbent was applied to remove petroleum compounds from the water medium. The characterization analyses of the walnut shells showed the macro-mesopore structure of the walnut shells, a specific surface area of 26 m<sup>2</sup>/g, and the presence of various functional groups (-OH, -COOH, -C = O). The CCD design showed that the walnut shell can remove 84.43% of petroleum compounds at pH = 3 (the optimum pH), adsorbent dosage: 2 g/L, and initial concentration of petroleum compounds: 550 mg/L. The study of kinetics and adsorption equilibrium indicated matching the experimental data with the pseudo-second-order kinetic model and Freundlich equilibrium isotherm, respectively. The maximum adsorption ability of walnut shell was 3038.29 mg/g at 45 °C. The ability to regenerate and reuse the walnut shell was investigated in 6 cycles, and the results showed a 21% decrease in adsorption ability after 6 cycles. The obtained data showed that the walnut shells could be a promising adsorbent with high adsorption ability toward petroleum components. Also, the walnut shell is a regenerable adsorbent, low-cost, and environmentally friendly, and can be effective in successive cycles. Therefore, this biosorbent can have a superb influence on wastewater treatment technology and possible applications at an industrial scale.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-10"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2433536","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, a walnut shell as a biosorbent was applied to remove petroleum compounds from the water medium. The characterization analyses of the walnut shells showed the macro-mesopore structure of the walnut shells, a specific surface area of 26 m2/g, and the presence of various functional groups (-OH, -COOH, -C = O). The CCD design showed that the walnut shell can remove 84.43% of petroleum compounds at pH = 3 (the optimum pH), adsorbent dosage: 2 g/L, and initial concentration of petroleum compounds: 550 mg/L. The study of kinetics and adsorption equilibrium indicated matching the experimental data with the pseudo-second-order kinetic model and Freundlich equilibrium isotherm, respectively. The maximum adsorption ability of walnut shell was 3038.29 mg/g at 45 °C. The ability to regenerate and reuse the walnut shell was investigated in 6 cycles, and the results showed a 21% decrease in adsorption ability after 6 cycles. The obtained data showed that the walnut shells could be a promising adsorbent with high adsorption ability toward petroleum components. Also, the walnut shell is a regenerable adsorbent, low-cost, and environmentally friendly, and can be effective in successive cycles. Therefore, this biosorbent can have a superb influence on wastewater treatment technology and possible applications at an industrial scale.

利用核桃壳对水溶液中的石油化合物进行生物吸附。
在这里,核桃壳作为一种生物吸附剂被用于去除水介质中的石油化合物。核桃壳的表征分析表明,核桃壳具有大介孔结构,比表面积为 26 m2/g,并存在各种官能团(-OH、-COOH、-C = O)。CCD 设计结果表明,在 pH = 3(最佳 pH 值)、吸附剂用量为 2 g/L、初始浓度为 0.5 mg/L 的条件下,核桃壳可去除 84.43% 的石油化合物:2 g/L,石油化合物初始浓度为 550 mg/L:550 毫克/升。动力学和吸附平衡研究表明,实验数据分别与伪二阶动力学模型和 Freundlich 平衡等温线相吻合。在 45 °C 时,核桃壳的最大吸附能力为 3038.29 mg/g。对核桃壳的再生和再利用能力进行了 6 个周期的研究,结果表明 6 个周期后吸附能力下降了 21%。所得数据表明,核桃壳是一种很有前途的吸附剂,对石油成分具有很高的吸附能力。此外,核桃壳是一种可再生的吸附剂,成本低,对环境友好,而且可以在连续循环中有效吸附。因此,这种生物吸附剂可对废水处理技术产生巨大影响,并有可能在工业规模上得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Phytoremediation
International Journal of Phytoremediation 环境科学-环境科学
CiteScore
7.60
自引率
5.40%
发文量
145
审稿时长
3.4 months
期刊介绍: The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信