Inimfon A Udoetok, Mohamed H Mohamed, Lee D Wilson
{"title":"Stabilization of Oil-in-Water Pickering Emulsions by Surface-Functionalized Cellulose Hydrogel.","authors":"Inimfon A Udoetok, Mohamed H Mohamed, Lee D Wilson","doi":"10.3390/gels10110685","DOIUrl":null,"url":null,"abstract":"<p><p>An amphiphilic cellulose (<b>CLH</b>) hydrogel was synthesized via grafting of quaternary ammonium groups onto cellulose. The structural properties of <b>CLH</b> were characterized via Fourier transform infrared (FTIR)/<sup>13</sup>C solid-state NMR spectroscopy, elemental (CHN) analysis, particle size distribution (PSD), thermogravimetric analysis (TGA), and wettability was assessed through contact angle measurements. Pickering emulsions of apolar oils in water were prepared using variable weights of the <b>CLH</b> hydrogel as the stabilizing agent, along with different methods of agitation (mechanical shaking and sonication). The characterization results for <b>CLH</b> provide support for the successful grafting of quaternary ammonium groups onto cellulose to produce hydrogels. Different methods of agitation of an oil/water mixture revealed the formation of an <i>oil-in-water</i> (O/W) Pickering emulsion that was stable to coalescence for over 14 days. The resulting emulsions showed variable droplet sizes and stability according to the dosage of <b>CLH</b> in the emulsion and the agitation method, where the emulsion droplet size is related to the particle size of <b>CLH</b>. The addition of methyl orange (MO), a probe to evaluate the phase partitioning of the dye, had minor effects on the emulsion droplet size, and the emulsion prepared with 0.8 wt.% of <b>CLH</b> and agitated via sonication exhibited the smallest droplet size and greatest stability. This study is anticipated to catalyze further research and the development of low-cost and sustainable biopolymer hydrogels as stabilizers for tunable Pickering emulsion. Grafted cellulose materials of this type represent versatile stabilizing agents for foods, agrochemicals, and pharmaceutical products and technologies.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 11","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593766/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10110685","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
An amphiphilic cellulose (CLH) hydrogel was synthesized via grafting of quaternary ammonium groups onto cellulose. The structural properties of CLH were characterized via Fourier transform infrared (FTIR)/13C solid-state NMR spectroscopy, elemental (CHN) analysis, particle size distribution (PSD), thermogravimetric analysis (TGA), and wettability was assessed through contact angle measurements. Pickering emulsions of apolar oils in water were prepared using variable weights of the CLH hydrogel as the stabilizing agent, along with different methods of agitation (mechanical shaking and sonication). The characterization results for CLH provide support for the successful grafting of quaternary ammonium groups onto cellulose to produce hydrogels. Different methods of agitation of an oil/water mixture revealed the formation of an oil-in-water (O/W) Pickering emulsion that was stable to coalescence for over 14 days. The resulting emulsions showed variable droplet sizes and stability according to the dosage of CLH in the emulsion and the agitation method, where the emulsion droplet size is related to the particle size of CLH. The addition of methyl orange (MO), a probe to evaluate the phase partitioning of the dye, had minor effects on the emulsion droplet size, and the emulsion prepared with 0.8 wt.% of CLH and agitated via sonication exhibited the smallest droplet size and greatest stability. This study is anticipated to catalyze further research and the development of low-cost and sustainable biopolymer hydrogels as stabilizers for tunable Pickering emulsion. Grafted cellulose materials of this type represent versatile stabilizing agents for foods, agrochemicals, and pharmaceutical products and technologies.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.