MinD2 modulates cell shape and motility in the archaeon Haloferax volcanii.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2024-11-12 eCollection Date: 2024-01-01 DOI:10.3389/fmicb.2024.1474570
Megha Patro, Felix Grünberger, Shamphavi Sivabalasarma, Sabrina Gfrerer, Marta Rodriguez-Franco, Phillip Nußbaum, Dina Grohmann, Solenne Ithurbide, Sonja-Verena Albers
{"title":"MinD2 modulates cell shape and motility in the archaeon <i>Haloferax volcanii</i>.","authors":"Megha Patro, Felix Grünberger, Shamphavi Sivabalasarma, Sabrina Gfrerer, Marta Rodriguez-Franco, Phillip Nußbaum, Dina Grohmann, Solenne Ithurbide, Sonja-Verena Albers","doi":"10.3389/fmicb.2024.1474570","DOIUrl":null,"url":null,"abstract":"<p><p>In bacteria and archaea, proteins of the ParA/MinD family of ATPases regulate the spatiotemporal organization of various cellular cargoes, including cell division proteins, motility structures, chemotaxis systems, and chromosomes. In bacteria, such as <i>Escherichia coli</i>, MinD proteins are crucial for the correct placement of the Z-ring at mid-cell during cell division. However, previous studies have shown that none of the 4 MinD homologs present in the archaeon <i>Haloferax volcanii</i> have a role in cell division, suggesting that these proteins regulate different cellular processes in haloarchaea. Here, we show that while deletion of MinD2 in <i>H. volcanii</i> (<i>∆minD2</i>) does not affect cell growth or division, it impacts cell shape and motility by mispositioning the chemotaxis arrays and archaellum motors. Finally, we explore the links between MinD2 and MinD4, which has been previously shown to modulate the localization of chemosensory arrays and archaella in <i>H. volcanii</i>, finding that the two MinD homologues have synergistic effects in regulating the positioning of the motility machinery. Collectively, our findings identify MinD2 as an important link between cell shape and motility in <i>H. volcanii</i> and further our understanding of the mechanisms by which multiple MinD proteins regulate cellular functions in haloarchaea.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"15 ","pages":"1474570"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588486/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1474570","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In bacteria and archaea, proteins of the ParA/MinD family of ATPases regulate the spatiotemporal organization of various cellular cargoes, including cell division proteins, motility structures, chemotaxis systems, and chromosomes. In bacteria, such as Escherichia coli, MinD proteins are crucial for the correct placement of the Z-ring at mid-cell during cell division. However, previous studies have shown that none of the 4 MinD homologs present in the archaeon Haloferax volcanii have a role in cell division, suggesting that these proteins regulate different cellular processes in haloarchaea. Here, we show that while deletion of MinD2 in H. volcanii (∆minD2) does not affect cell growth or division, it impacts cell shape and motility by mispositioning the chemotaxis arrays and archaellum motors. Finally, we explore the links between MinD2 and MinD4, which has been previously shown to modulate the localization of chemosensory arrays and archaella in H. volcanii, finding that the two MinD homologues have synergistic effects in regulating the positioning of the motility machinery. Collectively, our findings identify MinD2 as an important link between cell shape and motility in H. volcanii and further our understanding of the mechanisms by which multiple MinD proteins regulate cellular functions in haloarchaea.

MinD2 可调节火山古菌 Haloferax 的细胞形状和运动性。
在细菌和古细菌中,ParA/MinD ATP 酶家族的蛋白质调节各种细胞货物的时空组织,包括细胞分裂蛋白、运动结构、趋化系统和染色体。在大肠杆菌等细菌中,MinD 蛋白对细胞分裂过程中 Z 环在细胞中期的正确位置至关重要。然而,之前的研究表明,火山石半知菌(Haloferax volcanii)中的 4 个 MinD 同源物都不在细胞分裂中发挥作用,这表明这些蛋白在半知菌中调控不同的细胞过程。在这里,我们展示了火山石蜡菌(H. volcanii)中 MinD2 的缺失(∆ minD2)不会影响细胞的生长或分裂,但会通过趋化阵列和弓形体马达的错误定位影响细胞的形状和运动性。最后,我们探讨了 MinD2 与 MinD4 之间的联系,发现这两个 MinD 同源物在调节运动机制的定位方面具有协同作用。总之,我们的发现确定了 MinD2 是连接火山菌细胞形状和运动能力的重要纽带,并进一步加深了我们对多种 MinD 蛋白调控半知菌细胞功能的机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信