Regression of Concurrence via Local Unitary Invariants.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-10-29 DOI:10.3390/e26110917
Ming Li, Wenjun Wang, Xiaoyu Zhang, Jing Wang, Lei Li, Shuqian Shen
{"title":"Regression of Concurrence via Local Unitary Invariants.","authors":"Ming Li, Wenjun Wang, Xiaoyu Zhang, Jing Wang, Lei Li, Shuqian Shen","doi":"10.3390/e26110917","DOIUrl":null,"url":null,"abstract":"<p><p>Concurrence is a crucial entanglement measure in quantum theory used to describe the degree of entanglement between two or more qubits. Local unitary (LU) invariants can be employed to describe the relevant properties of quantum states. Compared to quantum state tomography, observing LU invariants can save substantial physical resources and reduce errors associated with tomography. In this paper, we use LU invariants as explanatory variables and employ methods such as multiple regression, tree models, and BP neural network models to fit the concurrence of 2-qubit quantum states. For pure states and Werner states, by analyzing the correlation between data, a functional formula for concurrence in terms of LU invariants is obtained. Additionally, for any two-qubit quantum states, the prediction accuracy for concurrence reaches 98.5%.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592569/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26110917","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Concurrence is a crucial entanglement measure in quantum theory used to describe the degree of entanglement between two or more qubits. Local unitary (LU) invariants can be employed to describe the relevant properties of quantum states. Compared to quantum state tomography, observing LU invariants can save substantial physical resources and reduce errors associated with tomography. In this paper, we use LU invariants as explanatory variables and employ methods such as multiple regression, tree models, and BP neural network models to fit the concurrence of 2-qubit quantum states. For pure states and Werner states, by analyzing the correlation between data, a functional formula for concurrence in terms of LU invariants is obtained. Additionally, for any two-qubit quantum states, the prediction accuracy for concurrence reaches 98.5%.

通过局部单元不变式回归一致。
一致是量子理论中的一个重要纠缠度量,用于描述两个或多个量子比特之间的纠缠程度。局部单元(LU)不变式可用于描述量子态的相关特性。与量子态层析成像相比,观测 LU 不变量可以节省大量物理资源,并减少与层析成像相关的误差。在本文中,我们使用 LU 不变式作为解释变量,并采用多元回归、树模型和 BP 神经网络模型等方法来拟合 2 量子位量子态的并发性。对于纯态和维纳态,通过分析数据之间的相关性,可以得到以 LU 变量为基础的并合函数式。此外,对于任何双量子比特量子态,并发的预测准确率都达到了 98.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信