Mapping Data to Concepts: Enhancing Quantum Neural Network Transparency with Concept-Driven Quantum Neural Networks.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-10-24 DOI:10.3390/e26110902
Jinkai Tian, Wenjing Yang
{"title":"Mapping Data to Concepts: Enhancing Quantum Neural Network Transparency with Concept-Driven Quantum Neural Networks.","authors":"Jinkai Tian, Wenjing Yang","doi":"10.3390/e26110902","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce the concept-driven quantum neural network (CD-QNN), an innovative architecture designed to enhance the interpretability of quantum neural networks (QNNs). CD-QNN merges the representational capabilities of QNNs with the transparency of self-explanatory models by mapping input data into a human-understandable concept space and making decisions based on these concepts. The algorithmic design of CD-QNN is comprehensively analyzed, detailing the roles of the concept generator, feature extractor, and feature integrator in improving and balancing model expressivity and interpretability. Experimental results demonstrate that CD-QNN maintains high predictive accuracy while offering clear and meaningful explanations of its decision-making process. This paradigm shift in QNN design underscores the growing importance of interpretability in quantum artificial intelligence, positioning CD-QNN and its derivative technologies as pivotal in advancing reliable and interpretable quantum intelligent systems for future research and applications.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592992/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26110902","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the concept-driven quantum neural network (CD-QNN), an innovative architecture designed to enhance the interpretability of quantum neural networks (QNNs). CD-QNN merges the representational capabilities of QNNs with the transparency of self-explanatory models by mapping input data into a human-understandable concept space and making decisions based on these concepts. The algorithmic design of CD-QNN is comprehensively analyzed, detailing the roles of the concept generator, feature extractor, and feature integrator in improving and balancing model expressivity and interpretability. Experimental results demonstrate that CD-QNN maintains high predictive accuracy while offering clear and meaningful explanations of its decision-making process. This paradigm shift in QNN design underscores the growing importance of interpretability in quantum artificial intelligence, positioning CD-QNN and its derivative technologies as pivotal in advancing reliable and interpretable quantum intelligent systems for future research and applications.

将数据映射到概念:用概念驱动的量子神经网络增强量子神经网络的透明度。
我们介绍了概念驱动量子神经网络(CD-QNN),这是一种创新架构,旨在增强量子神经网络(QNN)的可解释性。CD-QNN 通过将输入数据映射到人类可理解的概念空间,并根据这些概念做出决策,从而将量子神经网络的表征能力与自解释模型的透明度融为一体。本文全面分析了 CD-QNN 的算法设计,详细介绍了概念生成器、特征提取器和特征整合器在改进和平衡模型表达性和可解释性方面的作用。实验结果表明,CD-QNN 保持了较高的预测准确性,同时对其决策过程提供了清晰而有意义的解释。量子网络设计中的这一范式转变强调了可解释性在量子人工智能中日益增长的重要性,并将 CD-QNN 及其衍生技术定位为在未来研究和应用中推进可靠且可解释的量子智能系统的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信