Bayesian Mechanics of Synaptic Learning Under the Free-Energy Principle.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-11-16 DOI:10.3390/e26110984
Chang Sub Kim
{"title":"Bayesian Mechanics of Synaptic Learning Under the Free-Energy Principle.","authors":"Chang Sub Kim","doi":"10.3390/e26110984","DOIUrl":null,"url":null,"abstract":"<p><p>The brain is a biological system comprising nerve cells and orchestrates its embodied agent's perception, behavior, and learning in dynamic environments. The free-energy principle (FEP) advocated by Karl Friston explicates the local, recurrent, and self-supervised cognitive dynamics of the brain's higher-order functions. In this study, we continue to refine the FEP through a physics-guided formulation; specifically, we apply our theory to synaptic learning by considering it an inference problem under the FEP and derive the governing equations, called Bayesian mechanics. Our study uncovers how the brain infers weight changes and postsynaptic activity, conditioned on the presynaptic input, by deploying generative models of the likelihood and prior belief. Consequently, we exemplify the synaptic efficacy in the brain with a simple model; in particular, we illustrate that the brain organizes an optimal trajectory in neural phase space during synaptic learning in continuous time, which variationally minimizes synaptic surprisal.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592945/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26110984","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The brain is a biological system comprising nerve cells and orchestrates its embodied agent's perception, behavior, and learning in dynamic environments. The free-energy principle (FEP) advocated by Karl Friston explicates the local, recurrent, and self-supervised cognitive dynamics of the brain's higher-order functions. In this study, we continue to refine the FEP through a physics-guided formulation; specifically, we apply our theory to synaptic learning by considering it an inference problem under the FEP and derive the governing equations, called Bayesian mechanics. Our study uncovers how the brain infers weight changes and postsynaptic activity, conditioned on the presynaptic input, by deploying generative models of the likelihood and prior belief. Consequently, we exemplify the synaptic efficacy in the brain with a simple model; in particular, we illustrate that the brain organizes an optimal trajectory in neural phase space during synaptic learning in continuous time, which variationally minimizes synaptic surprisal.

自由能量原理下的突触学习贝叶斯力学
大脑是一个由神经细胞组成的生物系统,在动态环境中协调其体现者的感知、行为和学习。卡尔-弗里斯顿(Karl Friston)倡导的自由能原理(FEP)阐述了大脑高阶功能的局部、循环和自我监督认知动态。在本研究中,我们继续通过物理学指导下的表述来完善 FEP;具体而言,我们将理论应用于突触学习,将其视为 FEP 下的推理问题,并推导出管理方程,即贝叶斯力学。我们的研究揭示了大脑如何在突触前输入的条件下,通过部署可能性和先验信念的生成模型来推断权重变化和突触后活动。因此,我们用一个简单的模型举例说明了大脑中的突触功效;特别是,我们说明了大脑在连续时间的突触学习过程中,在神经相空间中组织了一个最佳轨迹,该轨迹的变化使突触意外最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信