An Information-Theoretic Proof of a Hypercontractive Inequality.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-11-11 DOI:10.3390/e26110966
Ehud Friedgut
{"title":"An Information-Theoretic Proof of a Hypercontractive Inequality.","authors":"Ehud Friedgut","doi":"10.3390/e26110966","DOIUrl":null,"url":null,"abstract":"<p><p>The famous hypercontractive estimate discovered independently by Gross, Bonami and Beckner has had a great impact on combinatorics and theoretical computer science since it was first used in this setting in a seminal paper by Kahn, Kalai and Linial. The usual proofs of this inequality begin with two-point space, where some elementary calculus is used and then generalised immediately by introducing another dimension using submultiplicativity (Minkowski's integral inequality). In this paper, we prove this inequality using information theory. We compare the entropy of a pair of correlated vectors in {0,1}n to their separate entropies, analysing them bit by bit (not as a figure of speech, but as the bits are revealed) using the chain rule of entropy.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593016/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26110966","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The famous hypercontractive estimate discovered independently by Gross, Bonami and Beckner has had a great impact on combinatorics and theoretical computer science since it was first used in this setting in a seminal paper by Kahn, Kalai and Linial. The usual proofs of this inequality begin with two-point space, where some elementary calculus is used and then generalised immediately by introducing another dimension using submultiplicativity (Minkowski's integral inequality). In this paper, we prove this inequality using information theory. We compare the entropy of a pair of correlated vectors in {0,1}n to their separate entropies, analysing them bit by bit (not as a figure of speech, but as the bits are revealed) using the chain rule of entropy.

超契约不等式的信息论证明。
自从格罗斯、博纳米和贝克纳在卡恩、卡莱和利尼阿尔的一篇开创性论文中首次将超契约估计用于组合学和理论计算机科学以来,他们独立发现的著名超契约估计对组合学和理论计算机科学产生了巨大影响。该不等式的通常证明从两点空间开始,先使用一些基本微积分,然后利用亚乘法(闵可夫斯基积分不等式)引入另一维度,立即得到推广。在本文中,我们用信息论证明了这一不等式。我们将{0,1}n中一对相关向量的熵与它们各自的熵进行比较,利用熵的链式法则对它们进行逐位分析(不是比喻,而是随着位的揭示)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信