Gossypetin Alleviates DSS-induced Colitis by Regulating COX2 and ROS-JNK Signaling.

IF 2.2 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hyeonjin Kim, Eungyung Kim, Lei Ma, ChaeYeon Kim, Kanghyun Park, Zhibin Liu, Ke Huang, Dong Joon Kim, Zae Young Ryoo, Jun Koo Yi, Yonghun Sung, Soyoung Jang, Myoung Ok Kim
{"title":"Gossypetin Alleviates DSS-induced Colitis by Regulating COX2 and ROS-JNK Signaling.","authors":"Hyeonjin Kim, Eungyung Kim, Lei Ma, ChaeYeon Kim, Kanghyun Park, Zhibin Liu, Ke Huang, Dong Joon Kim, Zae Young Ryoo, Jun Koo Yi, Yonghun Sung, Soyoung Jang, Myoung Ok Kim","doi":"10.2174/0113892010331882240901095733","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Inflammatory Bowel Disease (IBD) represents a chronic and recurrent inflammatory condition affecting the gastrointestinal tract, with a rising global incidence. Current treatment approaches include surgery and drugs. However, surgeries are invasive procedures, while drug treatments often present with various side effects. Gossypetin, a flavonoid found abundantly in plants such as hibiscus, exhibits anti-oxidant and anti-cancer properties. However, its potential impact on IBD remains unexplored.</p><p><strong>Objective: </strong>This study aimed to investigate the therapeutic potential of gossypetin on colitis.</p><p><strong>Methods: </strong>We employed the DSS-induced colitis model to evaluate the therapeutic potential of gossypetin on colitis. The efficacy of gossypetin was assessed within this model using the Disease Activity Index (DAI) score and histological analysis. Additionally, we utilized qRT-PCR to measure the levels of inflammatory cytokines and Superoxide Dismutase (SOD). Immunohistochemistry confirmed the expression of tight junction markers, COX-2, and phosphorylated JNK protein, normally associated with disease progression. Furthermore, Western blot analysis was conducted to examine the SOD levels and anti-apoptotic effects of gossypetin.</p><p><strong>Results: </strong>In DSS-induced colitis mice, gossypetin treatment ameliorated weight loss and reduced colon length caused by DSS treatment. Additionally, gossypetin-treated groups exhibited DAI scores and reduced histological damage. Moreover, gossypetin treatment increased tight junction expression, decreased inflammatory responses, reduced ROS levels, attenuated JNK signaling, and decreased apoptosis.</p><p><strong>Conclusion: </strong>Gossypetin shows therapeutic potential for mitigating the symptoms and progression of colitis by targeting ROS-JNK signaling involved in inflammation and tissue damage. This highlights the potential of natural compounds such as gossypetin for targeted therapies with reduced side effects and improved efficacy.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010331882240901095733","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Inflammatory Bowel Disease (IBD) represents a chronic and recurrent inflammatory condition affecting the gastrointestinal tract, with a rising global incidence. Current treatment approaches include surgery and drugs. However, surgeries are invasive procedures, while drug treatments often present with various side effects. Gossypetin, a flavonoid found abundantly in plants such as hibiscus, exhibits anti-oxidant and anti-cancer properties. However, its potential impact on IBD remains unexplored.

Objective: This study aimed to investigate the therapeutic potential of gossypetin on colitis.

Methods: We employed the DSS-induced colitis model to evaluate the therapeutic potential of gossypetin on colitis. The efficacy of gossypetin was assessed within this model using the Disease Activity Index (DAI) score and histological analysis. Additionally, we utilized qRT-PCR to measure the levels of inflammatory cytokines and Superoxide Dismutase (SOD). Immunohistochemistry confirmed the expression of tight junction markers, COX-2, and phosphorylated JNK protein, normally associated with disease progression. Furthermore, Western blot analysis was conducted to examine the SOD levels and anti-apoptotic effects of gossypetin.

Results: In DSS-induced colitis mice, gossypetin treatment ameliorated weight loss and reduced colon length caused by DSS treatment. Additionally, gossypetin-treated groups exhibited DAI scores and reduced histological damage. Moreover, gossypetin treatment increased tight junction expression, decreased inflammatory responses, reduced ROS levels, attenuated JNK signaling, and decreased apoptosis.

Conclusion: Gossypetin shows therapeutic potential for mitigating the symptoms and progression of colitis by targeting ROS-JNK signaling involved in inflammation and tissue damage. This highlights the potential of natural compounds such as gossypetin for targeted therapies with reduced side effects and improved efficacy.

格桑花素通过调节 COX2 和 ROS-JNK 信号缓解 DSS 诱导的结肠炎
背景:炎症性肠病(IBD炎症性肠病(IBD)是一种影响胃肠道的慢性、复发性炎症,全球发病率不断上升。目前的治疗方法包括手术和药物。然而,手术是一种侵入性程序,而药物治疗往往会产生各种副作用。木槿黄酮素是一种黄酮类化合物,大量存在于木槿等植物中,具有抗氧化和抗癌作用。然而,它对 IBD 的潜在影响仍有待探索:本研究旨在探讨格桑皮苷对结肠炎的治疗潜力:方法:我们采用 DSS 诱导的结肠炎模型来评估格桑花苷对结肠炎的治疗潜力。在该模型中,我们使用疾病活动指数(DAI)评分和组织学分析评估格桑素的疗效。此外,我们还利用 qRT-PCR 技术测量了炎症细胞因子和超氧化物歧化酶(SOD)的水平。免疫组化证实了紧密连接标记物、COX-2 和磷酸化 JNK 蛋白的表达,这通常与疾病进展有关。此外,还进行了 Western 印迹分析,以检测 SOD 水平和格桑素的抗凋亡作用:结果:在DSS诱导的结肠炎小鼠中,格桑素能改善DSS导致的体重减轻和结肠长度缩短。此外,格桑素处理组的 DAI 评分和组织学损伤均有所降低。此外,格桑素还能增加紧密连接表达、减少炎症反应、降低 ROS 水平、减弱 JNK 信号转导并减少细胞凋亡:格桑花素通过靶向参与炎症和组织损伤的 ROS-JNK 信号转导,显示出缓解结肠炎症状和病情发展的治疗潜力。这凸显了格桑花苷等天然化合物在靶向治疗方面的潜力,可减少副作用并提高疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current pharmaceutical biotechnology
Current pharmaceutical biotechnology 医学-生化与分子生物学
CiteScore
5.60
自引率
3.60%
发文量
203
审稿时长
6 months
期刊介绍: Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include: DNA/protein engineering and processing Synthetic biotechnology Omics (genomics, proteomics, metabolomics and systems biology) Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes) Drug delivery and targeting Nanobiotechnology Molecular pharmaceutics and molecular pharmacology Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes) Pharmacokinetics and pharmacodynamics Applied Microbiology Bioinformatics (computational biopharmaceutics and modeling) Environmental biotechnology Regenerative medicine (stem cells, tissue engineering and biomaterials) Translational immunology (cell therapies, antibody engineering, xenotransplantation) Industrial bioprocesses for drug production and development Biosafety Biotech ethics Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信