A Comprehensive Method for Example-Based Color Transfer with Holistic-Local Balancing and Unit-Wise Riemannian Information Gradient Acceleration.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2024-10-29 DOI:10.3390/e26110918
Zeyu Wang, Jialun Zhou, Song Wang, Ning Wang
{"title":"A Comprehensive Method for Example-Based Color Transfer with Holistic-Local Balancing and Unit-Wise Riemannian Information Gradient Acceleration.","authors":"Zeyu Wang, Jialun Zhou, Song Wang, Ning Wang","doi":"10.3390/e26110918","DOIUrl":null,"url":null,"abstract":"<p><p>Color transfer, an essential technique in image editing, has recently received significant attention. However, achieving a balance between holistic color style transfer and local detail refinement remains a challenging task. This paper proposes an innovative color transfer method, named BHL, which stands for Balanced consideration of both Holistic transformation and Local refinement. The BHL method employs a statistical framework to address the challenge of achieving a balance between holistic color transfer and the preservation of fine details during the color transfer process. Holistic color transformation is achieved using optimal transport theory within the generalized Gaussian modeling framework. The local refinement module adjusts color and texture details on a per-pixel basis using a Gaussian Mixture Model (GMM). To address the high computational complexity inherent in complex statistical modeling, a parameter estimation method called the unit-wise Riemannian information gradient (uRIG) method is introduced. The uRIG method significantly reduces the computational burden through the second-order acceleration effect of the Fisher information metric. Comprehensive experiments demonstrate that the BHL method outperforms state-of-the-art techniques in both visual quality and objective evaluation criteria, even under stringent time constraints. Remarkably, the BHL method processes high-resolution images in an average of 4.874 s, achieving the fastest processing time compared to the baselines. The BHL method represents a significant advancement in the field of color transfer, offering a balanced approach that combines holistic transformation and local refinement while maintaining efficiency and high visual quality.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592582/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26110918","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Color transfer, an essential technique in image editing, has recently received significant attention. However, achieving a balance between holistic color style transfer and local detail refinement remains a challenging task. This paper proposes an innovative color transfer method, named BHL, which stands for Balanced consideration of both Holistic transformation and Local refinement. The BHL method employs a statistical framework to address the challenge of achieving a balance between holistic color transfer and the preservation of fine details during the color transfer process. Holistic color transformation is achieved using optimal transport theory within the generalized Gaussian modeling framework. The local refinement module adjusts color and texture details on a per-pixel basis using a Gaussian Mixture Model (GMM). To address the high computational complexity inherent in complex statistical modeling, a parameter estimation method called the unit-wise Riemannian information gradient (uRIG) method is introduced. The uRIG method significantly reduces the computational burden through the second-order acceleration effect of the Fisher information metric. Comprehensive experiments demonstrate that the BHL method outperforms state-of-the-art techniques in both visual quality and objective evaluation criteria, even under stringent time constraints. Remarkably, the BHL method processes high-resolution images in an average of 4.874 s, achieving the fastest processing time compared to the baselines. The BHL method represents a significant advancement in the field of color transfer, offering a balanced approach that combines holistic transformation and local refinement while maintaining efficiency and high visual quality.

利用整体-局部平衡和单位智黎曼信息梯度加速的基于示例的色彩转移综合方法。
色彩转换是图像编辑中的一项基本技术,最近受到了广泛关注。然而,如何在整体色彩风格转换和局部细节细化之间取得平衡仍然是一项具有挑战性的任务。本文提出了一种创新的色彩转换方法,命名为 BHL,即平衡考虑整体转换和局部细化。BHL 方法采用了一个统计框架,以解决在色彩转换过程中实现整体色彩转换和精细细节保留之间的平衡这一难题。整体色彩转换是在广义高斯建模框架内利用最优传输理论实现的。局部细化模块使用高斯混合模型 (GMM) 按像素调整色彩和纹理细节。为了解决复杂统计建模固有的高计算复杂性问题,该系统引入了一种名为 "单位向黎曼信息梯度(uRIG)"的参数估计方法。uRIG 方法通过费雪信息度量的二阶加速效应大大减轻了计算负担。综合实验证明,即使在严格的时间限制条件下,BHL 方法在视觉质量和客观评价标准方面都优于最先进的技术。值得注意的是,BHL 方法处理高分辨率图像的平均时间为 4.874 秒,与基线方法相比处理时间最快。BHL 方法是色彩转换领域的一项重大进步,它提供了一种将整体转换和局部细化相结合的平衡方法,同时保持了高效率和高视觉质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信