{"title":"Analgesic effects of high-frequency rTMS on pain anticipation and perception","authors":"Xiaoyun Li, Zhouan Liu, Yuzhen Hu, Richu Jin, Wutao Lou, Weiwei Peng","doi":"10.1038/s42003-024-07129-x","DOIUrl":null,"url":null,"abstract":"Previous studies suggest that pain perception is greatly shaped by anticipation, with M1 and DLPFC involved in this process. We hypothesized that high-frequency rTMS targeting these regions could alter pain anticipation and thereby reduce pain perception. In a double-blind, sham-controlled study, healthy participants received 10 Hz rTMS to M1, DLPFC, or a sham treatment. Assessments were conducted before, immediately after, and 60 min after stimulation, including laser-evoked potentials, pain ratings, and anticipatory EEG. M1-rTMS immediately reduced laser-evoked P2 amplitude, increased sensorimotor high-frequency α-oscillation power, and accelerated peak alpha frequency in the midfrontal region during pain anticipation. In contrast, DLPFC-rTMS reduced the N2-P2 complex and pain ratings 60 min post-stimulation, an effect associated with prolonged microstate C duration during pain anticipation—a microstate linked to default mode network activity. Thus, M1-rTMS immediately modulates anticipatory α-oscillations and laser-evoked potentials, while DLPFC-rTMS induces delayed analgesic effects partially by modulating default mode network activity. High-frequency rTMS to M1 and DLPFC modulates pain anticipation and perception. M1-rTMS immediately reduced pain via α-oscillation modulation, while DLPFC-rTMS produced delayed analgesia through default mode network modulation.","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":" ","pages":"1-12"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599282/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s42003-024-07129-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies suggest that pain perception is greatly shaped by anticipation, with M1 and DLPFC involved in this process. We hypothesized that high-frequency rTMS targeting these regions could alter pain anticipation and thereby reduce pain perception. In a double-blind, sham-controlled study, healthy participants received 10 Hz rTMS to M1, DLPFC, or a sham treatment. Assessments were conducted before, immediately after, and 60 min after stimulation, including laser-evoked potentials, pain ratings, and anticipatory EEG. M1-rTMS immediately reduced laser-evoked P2 amplitude, increased sensorimotor high-frequency α-oscillation power, and accelerated peak alpha frequency in the midfrontal region during pain anticipation. In contrast, DLPFC-rTMS reduced the N2-P2 complex and pain ratings 60 min post-stimulation, an effect associated with prolonged microstate C duration during pain anticipation—a microstate linked to default mode network activity. Thus, M1-rTMS immediately modulates anticipatory α-oscillations and laser-evoked potentials, while DLPFC-rTMS induces delayed analgesic effects partially by modulating default mode network activity. High-frequency rTMS to M1 and DLPFC modulates pain anticipation and perception. M1-rTMS immediately reduced pain via α-oscillation modulation, while DLPFC-rTMS produced delayed analgesia through default mode network modulation.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.