Ines Schoberleitner, Klaus Faserl, Michaela Lackner, Débora C Coraça-Huber, Angela Augustin, Anja Imsirovic, Stephan Sigl, Dolores Wolfram
{"title":"Unraveling the Immune Web: Advances in SMI Capsular Fibrosis from Molecular Insights to Preclinical Breakthroughs.","authors":"Ines Schoberleitner, Klaus Faserl, Michaela Lackner, Débora C Coraça-Huber, Angela Augustin, Anja Imsirovic, Stephan Sigl, Dolores Wolfram","doi":"10.3390/biom14111433","DOIUrl":null,"url":null,"abstract":"<p><p>Breast implant surgery has evolved significantly, yet challenges such as capsular contracture remain a persistent concern. This review presents an in-depth analysis of recent advancements in understanding the immune mechanisms and clinical implications associated with silicone mammary implants (SMIs). The article systematically examines the complex interplay between immune responses and capsular fibrosis, emphasizing the pathophysiological mechanisms of inflammation in the etiology of this fibrotic response. It discusses innovations in biomaterial science, including the development of novel anti-biofilm coatings and immunomodulatory surfaces designed to enhance implant integration and minimize complications. Emphasis is placed on personalized risk assessment strategies, leveraging molecular insights to tailor interventions and improve patient outcomes. Emerging therapeutic targets, advancements in surgical techniques, and the refinement of post-operative care are also explored. Despite notable progress, challenges such as the variability in immune responses, the long-term efficacy of new interventions, and ethical considerations remain. Future research directions are identified, focusing on personalized medicine, advanced biomaterials, and bridging preclinical findings with clinical applications. As we advance from bench to bedside, this review illuminates the path forward, where interdisciplinary collaboration and continued inquiry weave together to enhance the art and science of breast implant surgery, transforming patient care into a realm of precision and excellence.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"14 11","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592141/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14111433","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast implant surgery has evolved significantly, yet challenges such as capsular contracture remain a persistent concern. This review presents an in-depth analysis of recent advancements in understanding the immune mechanisms and clinical implications associated with silicone mammary implants (SMIs). The article systematically examines the complex interplay between immune responses and capsular fibrosis, emphasizing the pathophysiological mechanisms of inflammation in the etiology of this fibrotic response. It discusses innovations in biomaterial science, including the development of novel anti-biofilm coatings and immunomodulatory surfaces designed to enhance implant integration and minimize complications. Emphasis is placed on personalized risk assessment strategies, leveraging molecular insights to tailor interventions and improve patient outcomes. Emerging therapeutic targets, advancements in surgical techniques, and the refinement of post-operative care are also explored. Despite notable progress, challenges such as the variability in immune responses, the long-term efficacy of new interventions, and ethical considerations remain. Future research directions are identified, focusing on personalized medicine, advanced biomaterials, and bridging preclinical findings with clinical applications. As we advance from bench to bedside, this review illuminates the path forward, where interdisciplinary collaboration and continued inquiry weave together to enhance the art and science of breast implant surgery, transforming patient care into a realm of precision and excellence.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.