{"title":"Insulin-like Growth Factor-Binding Protein-1 (IGFBP-1) as a Biomarker of Cardiovascular Disease.","authors":"Moira S Lewitt, Gary W Boyd","doi":"10.3390/biom14111475","DOIUrl":null,"url":null,"abstract":"<p><p>Insulin-like growth factor-binding protein-1 (IGFBP-1) contributes to the regulation of IGFs for metabolism and growth and has IGF-independent actions. IGFBP-1 in the circulation is derived from the liver, where it is inhibited by insulin and stimulated by multiple factors, including proinflammatory cytokines. IGFBP-1 levels are influenced by sex and age, which also determine cardiometabolic risk and patterns of disease presentation. While lower circulating IGFBP-1 concentrations are associated with an unfavorable cardiometabolic risk profile, higher IGFBP-1 predicts worse cardiovascular disease outcomes. This review explores these associations and the possible roles of IGFBP-1 in the pathophysiology of atherosclerosis. We recommend the evaluation of dynamic approaches, such as simultaneous measurements of fasting IGFBP-1 and proinsulin level in response to an oral glucose challenge, as well as multi-marker approaches incorporating markers of inflammation.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"14 11","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592324/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14111475","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Insulin-like growth factor-binding protein-1 (IGFBP-1) contributes to the regulation of IGFs for metabolism and growth and has IGF-independent actions. IGFBP-1 in the circulation is derived from the liver, where it is inhibited by insulin and stimulated by multiple factors, including proinflammatory cytokines. IGFBP-1 levels are influenced by sex and age, which also determine cardiometabolic risk and patterns of disease presentation. While lower circulating IGFBP-1 concentrations are associated with an unfavorable cardiometabolic risk profile, higher IGFBP-1 predicts worse cardiovascular disease outcomes. This review explores these associations and the possible roles of IGFBP-1 in the pathophysiology of atherosclerosis. We recommend the evaluation of dynamic approaches, such as simultaneous measurements of fasting IGFBP-1 and proinsulin level in response to an oral glucose challenge, as well as multi-marker approaches incorporating markers of inflammation.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.