{"title":"Exploring the Biological Activity of a Humanized Anti-CD99 ScFv and Antibody for Targeting T Cell Malignancies.","authors":"Nuchjira Takheaw, Thanathat Pamonsupornwichit, Ratthakorn Chaiwut, Kamonporn Kotemul, Kanokporn Sornsuwan, On-Anong Juntit, Umpa Yasamut, Passaworn Cheyasawan, Witida Laopajon, Watchara Kasinrerk, Chatchai Tayapiwatana","doi":"10.3390/biom14111422","DOIUrl":null,"url":null,"abstract":"<p><p>CD99, a type I transmembrane protein, emerges as a promising therapeutic target due to its heightened expression in T cell acute lymphoblastic leukemia (T-ALL). This characteristic renders it a potential marker for minimal residual disease detection and an appealing target for antibody-based treatments. Previous studies have revealed that a mouse monoclonal antibody, mAb MT99/3, selectively binds to CD99, triggering apoptosis in T-ALL/T-LBL cells while preserving the integrity of healthy cells. By targeting CD99, mAb MT99/3 suppresses antigen presentation and disrupts T cell functions, offering promise for addressing hyperresponsive T cell conditions. To facilitate clinical translation, we developed a humanized ScFv variant of mAb MT99/3, termed HuScFvMT99/3 in \"ScFvkh\" design. Structural analysis confirms its resemblance to the original antibody, and the immunoreactivity of HuScFvMT99/3 against CD99 is preserved. The fully humanized version of antibody HuMT99/3 was further engineered, exhibiting similar binding affinity at the 10<sup>-10</sup> M level and specificity to the CD99 epitope without antigenic shift. HuMT99/3 demonstrates remarkable selectivity, recognizing both malignant and normal T cells but inducing apoptosis only in T-ALL/T-LBL cells, highlighting its potential for safe and targeted therapy.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"14 11","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592157/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14111422","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CD99, a type I transmembrane protein, emerges as a promising therapeutic target due to its heightened expression in T cell acute lymphoblastic leukemia (T-ALL). This characteristic renders it a potential marker for minimal residual disease detection and an appealing target for antibody-based treatments. Previous studies have revealed that a mouse monoclonal antibody, mAb MT99/3, selectively binds to CD99, triggering apoptosis in T-ALL/T-LBL cells while preserving the integrity of healthy cells. By targeting CD99, mAb MT99/3 suppresses antigen presentation and disrupts T cell functions, offering promise for addressing hyperresponsive T cell conditions. To facilitate clinical translation, we developed a humanized ScFv variant of mAb MT99/3, termed HuScFvMT99/3 in "ScFvkh" design. Structural analysis confirms its resemblance to the original antibody, and the immunoreactivity of HuScFvMT99/3 against CD99 is preserved. The fully humanized version of antibody HuMT99/3 was further engineered, exhibiting similar binding affinity at the 10-10 M level and specificity to the CD99 epitope without antigenic shift. HuMT99/3 demonstrates remarkable selectivity, recognizing both malignant and normal T cells but inducing apoptosis only in T-ALL/T-LBL cells, highlighting its potential for safe and targeted therapy.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.